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PREFACE

This book series seeks to aid researchers in selecting and applying new
computational chemistry methods to their own research problems. This aim
is achieved through tutorial-style chapters that provide solid starting points
and advice for novices as well as critical literature reviews highlighting
advanced applications to illustrate current state of the art. Volume 32 con-
tinues this longstanding tradition. While each chapter has a unique focus,
two themes connect the chapters in this volume. The first theme centers on
methods that can be broadly applied to a variety of systems in Chapters 1 and
2, and the second theme emphasizes special considerations required when
modeling very specific system types in Chapters 3 and 4.

Chapter 1 highlights the vast space of local minimum energy structures
of complex molecules to illustrate the importance of non-deterministic
global optimization (NDGO) approaches. Such approaches avoid visiting
every region of search space, thus inevitably allowing for the possibility that
the global minimum has not been found (otherwise the method would be
deterministic!). Because NDGO methods lack a true convergence criterion,
it is essential to use them properly to ensure meaningful results are obtained.
Thus, the subsection titled “NDGO Tips for Absolute Beginners” should
be bookmarked and reviewed regularly by new computational chemists
applying NDGO methods to any problem. Bernd Hartke illustrates the
humorous practice of naming NDGO algorithms after natural processes
that have no parallels to the NDGO problem, but then breaks down the
fundamental algorithm ideas into simple ingredients to identify similarities
and differences between such algorithms. Important guidance on the use of
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xii PREFACE

NDGO methods include use of a two-level strategy with combining exhaus-
tive global search using inexpensive methods to calculate energies followed
by local post-optimization of selected results at high levels of theory as well
avoiding single runs when using nondeterministic algorithms. This latter
advice is one that would be well-taken in many areas of computational
chemistry and a piece of advice one of the book editors personally gives
her students regularly! Chapter 1 closes with a set of recent highlights such
as the applicability of NDGO to a variety of optimization targets ranging
from force-field parameters to reaction networks.

Chapter 2 focuses on the excited-state dynamics calculations required
to calculate electronic absorption spectra or to investigate electron dynam-
ics of chemical systems irradiated by laser light. In particular, real-time
time-dependent (RT-TD) and non-adiabatic dynamics calculations using the
density functional tight binding (DFTB) formalism are explored. Stepwise
tutorials on the molecule naphthalene, are given to provide researchers with
practice applying these techniques to probe and understand the chemical
dynamics exhibited in a simple system to prepare them for work on larger
systems. Silver nanoparticles and nanoparticle chains illustrate applications
of the method to large systems. After thoroughly exploring the electron
dynamics of adiabatic systems in external electric fields using a single poten-
tial energy surface (PES), the theory and methods used to allow nonadiabatic
evolution of nuclear position on different PESs are considered. Nonadia-
batic evolution is essential for accurate modeling of photochemical and pho-
tovoltaic processes that involve transitions between PESs. Computational
efficiency of DFTB has advanced to the point that applications in emerging
areas of excited-state chemical dynamics in large, complex systems are now
within reach.

Chapter 3 transitions from a focus on methodology to applications of
methodologies to investigate a specialized type of chemical system, namely
chemical systems that form microphases with periodic morphologies such
as lamellae and cylinders. Microphases can form in diverse systems, ranging
from aggregated colloidal particles to diblock copolymers. Charbonneau
and Khang focus on the phenomenological field-theory description of
the order–disorder transition between ordered and disordered mesoscopic
domains. Key challenges identified in the simulation of microphase-forming
systems are largely addressed used very coarse-grained systems. Such
models are capable of describing phase transitions with mesoscale patterns
that occur over long time scales, a feat that is currently not computationally
tractable using atomic or molecular systems. The theoretical and com-
putational foundations of periodic microphase simulations are presented
systematically, culminating in a lesson on determining phase transitions
from such simulations. A series of classical Monte Carlo algorithms used to
enhance sampling efficiency required to simulate disordered microphases
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and distinguish morphological regimes are discussed. Applications of free
energy-based methods to obtain equilibrium phase information in a range
of systems illustrate the scope of applications currently within reach.

Chapter 4 provides a comprehensive overview of deep eutectic solvents
(DESs) and simulation methods to studying such systems. DESs are mix-
tures with far lower melting points than the individual components compris-
ing the mixture, often formed by mixing a strong hydrogen bond acceptor
with a strong hydrogen bond donor. The critical contributions of polarization
effects to the behavior of such systems, and the long timescale of simulations
needed to investigate many properties of interest, define the key trade-off:
While ab initio methods provide explicit treatment of polarization with limi-
tations on simulation timescales and system size, nonpolarizable force fields
can be applied to large systems and long timescales but lack explicit treat-
ment of polarization. Following a comprehensive consideration of obtain-
ing physical, thermodynamic, transport, and structural properties of DESs
from simulations, Shalini Rukmani, Brian Doherty, Orlando Acevedo, and
Coray Colina summarize non-polarizable force fields as performing well for
bulk properties, but poorly for reproduction of self-diffusion coefficients.
Charge scaling provided significant improvements while raising concerns
about treatment of additives that may alter charge transfer magnitudes. Spe-
cific charge models from DFT cluster or ab initio MD simulations have also
been implemented successfully, yet limit generalizability and transferability
of the nonpolarizable force field they are implement into. Methods to study
DESs are under ongoing development to address these issues.

The value of Reviews in Computational Chemistry stems from the peda-
gogically driven reviews that have made this ongoing book series so popular.
We are grateful to the authors featured in this volume for continuing the
tradition of providing not only comprehensive reviews, but also highlight-
ing best practices and factors to consider in performing similar modeling
studies.

Volumes of Reviews in Computational Chemistry are available in an
online form through Wiley InterScience. Please consult the Web (http://
www.interscience.wiley.com/onlinebooks) or contact reference@wiley
.com for the latest information.

We thank the authors of this and previous volumes for their excellent
chapters.

Abby L. Parrill
Memphis, TN

Kenny B. Lipkowitz
Washington, DC

October 2020

http://www.interscience.wiley.com/onlinebooks
http://www.interscience.wiley.com/onlinebooks
http://reference@wiley.com
http://reference@wiley.com
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IR: infrared
LJn: Lennard-Jones cluster with n atoms
MC: Monte Carlo
MCM: Monte Carlo with Minimization (Basin Hopping)
MD: Molecular Dynamics
ML: Machine Learning
MP2: Møller-Plesset perturbation theory, second order
MPI: message-passing interface (parallelization)
NDGO: Non-Deterministic Global Optimization (algorithms)
NFL(T): No Free Lunch (Theorem) for search and optimization
PES: Potential Energy Surface
PSO: Particle Swarm Optimization
SA: Simulated Annealing
wNFL(T): Weak No Free Lunch (Theorem)

INTRODUCTION

The Need for Structural Optimization

For any calculation of static or dynamic properties of molecular systems,
the (starting) structures of these molecules need to be known, at the level of
theory to be used. Since full configuration interaction in a complete basis
set extrapolation (and possibly with explicitly treated solvent molecules, at
finite temperature, etc.) is not practical, every level of theory is approximate,
in the sense that its results differ from experimental data. Because properties
may change appreciably even with small structure distortions, using exper-
imental molecular structures is not a good idea. Instead, they always need
to be optimized at the given level of theory, before any further calculations
can commence.

Several decades ago, computational chemistry could only deal with
small, isolated molecules. For these, local optimizations from guessed
starting structures were sufficient. These starting structures could be taken
from chemical intuition or from experiment. With gradients and frequencies
(1st and 2nd derivatives of the electronic energy with respect to the nuclear
coordinates) at the given level of theory, a local minimum-energy∗ structure
can then be found, using efficient standard procedures that are general
and system-independent. This is taken for granted now, but significant

∗Maximization of −f (x) corresponds to minimization of f (x), and for molecules usually min-
ima are more interesting than maxima. Therefore, “optimization” and “minimization” (and
sometimes also the designation “search”) are used interchangeably here and in the literature.
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development efforts were required,1 as well as an acknowledgment of the
need for all this in the computational chemistry community.

For three decades, we have experienced complex systems in theoreti-
cal calculations, giving rise to very many local minimum-energy structures.
Frequently, experimental information is insufficient to disentangle the sig-
natures from several different species, and human chemical intuition may
also struggle, at least outside the area of standard organic chemistry. In such
situations, approaches are needed that can find many or all local minima and
locate the best one of these, i.e., global optimization (GO).

It is frequently assumed that it may suffice to substitute true global opti-
mization by simply performing series of local minimizations, from differ-
ent guessed starting structures. However, with increasing complexity, this
naive approach quickly loses any reliability. This was so well-known in the
GO community already in the 1990s that it took a surprisingly long time
until Avaltroni and Corminboeuf demonstrated this explicitly for a real-life
test case2 in the published literature. Until today, however, this finding fre-
quently remains underappreciated. Astonishingly, even today, papers can be
published3 in which not even the need for global structure optimization is
recognized.

Search Space is Vast

This failure of series of local minimizations arises because the search space
of molecular structures is huge: It scales exponentially with the number of
degrees of freedom (DOF). The essence of the reason for this scaling is
depicted in Figure 1.

Unless a priori information allows for general restrictions, we have to
combine every possible coordinate value in one DOF with every other value
in all other DOFs, in direct-product style. This obviously leads to expo-
nential scaling of the search space size to be covered, with the number of
coordinates or particles. Thus, en scaling is a basic feature of n-dimensional
space, combined with the need to cover all of it. This need arises from our
wish to be sure to find the true global minimum and from our lack of global
information: Without reliable a priori information on how the function f (x⃗)
to be optimized behaves at a new point x⃗, we have to visit this new point
(i.e., we need to evaluate f (x⃗) at x⃗)—but as soon as we do this for all new
points x⃗, we are stuck in the en trap.

Figure 1 illustrates how exponential scaling arises, but fails to illustrate
how bad exponential scaling really is. Because even seasoned experts
sometimes underappreciate this, it is provided by Table 1, which shows
linear, cubic, and exponential scaling with the number of DOFs, in terms



1D: 41 = 4 points 2D:  42 = 16  points 3D:  43 = 64 points

FIGURE 1 If 4 coordinate values per DOF have to be checked, a two-dimensional or three-dimensional search has to cover not 8 and
12 points (linear scaling) but 16 and 64, respectively (exponential scaling).
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TABLE 1 Computation Wallclock Times (Rounded) to be Expected for
Calculations With Varying Numbers of Degrees of Freedom, for Fictitious
Algorithms That Scale Linearly, Cubically or Exponentially in the Number of
Degrees of Freedom.

Scaling

# Degrees of freedom Linear Cubic Exponential

5 1 s 1 s 1 s
10 2 s 8 s 2.5 min
20 4 s 1 min 1 month
40 8 s 8.5 min 50 million years
80 16 s 1 h 8 min —
160 32 s 9 h —
320 1 min 3 d —

of computational wallclock times. It starts with the assumption that a
calculation for 5 DOFs needs one second, which is a completely arbitrary
setting (but somewhat realistic, e.g., for quantum-chemistry calculations).
The ensuing scaling with the number of DOFs (which also is chemically
realistic, for electrons or nuclei), however, is very real and shows drastically
that all exponentially scaling algorithms can be used only for small DOF
numbers. Obviously, this situation cannot be changed fundamentally, even
if the prefactor of the exponentially scaling algorithm can be made much
smaller (i.e., if its wallclock time for 5 DOFs were much shorter than for
the linear or cubic scalings). Note that things are even worse if we examine
scaling in terms of particle numbers, with 3 DOFs per particle.

Deterministic vs Non-Deterministic Search

Since the above explanation how en scaling arises is so fundamental and
abstract, it applies in most cases, regardless of the technical details and of
the system under study. For the same reason, it is hard to find ways around
exponential scaling, unless equally fundamental assumptions are dropped:

A1: get rid of the idea to find the global minimum with certainty, and/or

A2: deliberately avoid visiting every region of search space.

These two requirements are obviously interconnected. The only other
ways out are
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A3: to reduce problem dimensionality n, or

A4: to have the above-mentioned reliable a priori information on f (x⃗i),
without ever calculating any of these function values f (x⃗i).

Problems with A3 and A4 are manifold: To counter exponential growth
in any useful way, dimensionality reduction has to be big and the a priori
information has to be certain and has to pertain to huge (and exponentially
growing) parts of search space. Again, both items appear to be linked: In
order to achieve any dimensionality reduction, one has to know that certain
parts of the system under study are not relevant. Additionally, practical expe-
rience tells us that both strategies, if viable at all, will be system-specific4, 5

and hence not transferable.
As a side note, the above seemingly convincing arguments are challenged

by repeated findings that (some?) GO problems appear to become easier if
embedded temporarily into a higher(!)-dimensional framework; for a recent
example see Ref.6. The standard argument to rationalize such findings is
that higher-dimensional spaces offer more low-barrier connections between
local minima than lower-dimensional ones, making the higher-dimensional
search space easier to navigate. Obviously, the above argument of Figure 1
still holds, i.e., the higher-dimensional space is (exponentially) larger.
Hence, for this strategy to work, the advantage of a simpler search space
has to overcompensate the size disadvantage. To the knowledge of the
present author, it has not been shown yet that this works in a generalizable
sense, beyond the particular cases studied so far.

In contrast, strategies A1 and A2 appear to be more transferable, but the
extent to which they are useful may vary from system to system. Clearly,
however, they have proven themselves to be very useful indeed, for a wide
variety of concrete problems in many areas.

For the present text, sticking to finding the global minimum with certainty
(and hence having to explore all of search space) corresponds to “determin-
istic global optimization” (DGO), while following strategies A1 and A2 is
“Non-deterministic Global Optimization” (NDGO).∗

There has been, and there continues to be, substantial development in
DGO Algorithms.7–11 However, from the above discussion, it follows that
DGO has to scale exponentially, which confines its applicability to small
problem instances. This is strikingly illustrated by the lack of substantial
progress in problem size when DGO methods are applied to global struc-
ture optimization of atomic or molecular clusters, between earlier work12

∗These definitions are widely but not universally used in this way.
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on 7 particles and similar work 13 years later13 on 11 particles, while for the
same problem, NDGO methods progressed from 4 particles14 to well over
150 particles15 in about half of this time. Because chemists are typically
interested in particle numbers between 50 and 200 rather than 5 and 10,
in real-life chemical applications GO is essentially always done by NDGO
methods, and this will likely remain so for a few decades. Quantum com-
puters may offer more practical prospects of treating exponentially scaling
problems of nontrivial size in a deterministic fashion and they are making
significant progress,16 but sadly they are still far away from routine, real-life
applications. Therefore, the remainder of this chapter deals exclusively with
NDGO approaches.

In contrast to DGO methods, NDGO approaches have to forgo any
attempts to cover all of search space and to find the global optimum with
certainty. If this is not done rigorously, NDGO mutates into DGO, but
with less efficiency: NDGO methods are built on heuristic inference while
DGO methods are designed to achieve complete search space coverage in
the most efficient way. Hence, it is highly unlikely that DGO methods can
be beaten on their home turf by NDGO methods that were designed for
very different aims. And again, as shown in Figure 1 and Table 1, when
facing the en cliff you desperately need all the efficiency you can possibly
get. Nevertheless, many NDGO papers proclaim to strive toward complete
search space coverage; as described, this is a fundamental misconception.

Another important corollary of this situation is that NDGO methods have
no convergence criterion—at least not in the usual sense: some (approxi-
mate or rigorous) method to measure the difference between the currently
best candidate solution and the true global optimum, or the rate of “ap-
proach to” the latter (quadratic, cubic, etc.) in terms of iterative step num-
bers. Both are available for standard local optimization algorithms,17 where
they can be derived from the typical underlying quadratic approximation
that also provides the iterative improvement recipes for those methods. Since
this quadratic approximation simply is a (multidimensional) Taylor series,
local optimization inherits the typical Taylor series generality. In global opti-
mization, however, such very short, truncated Taylor series approximations
cannot be employed in a general fashion, due to their strict locality. Never-
theless, in DGO methods, the degree of search space coverage (directly, or
indirectly via upper and lower bounds to the function to be optimized) and/or
these bounds themselves do provide at least an indirect measure for conver-
gence. As argued above, even the idea of search space coverage as a proxy to
estimate convergence is absent in NDGO methods (or should not be used).
What can, and should, be done instead is discussed below. Sadly, again in
many NDGO papers, this situation does not seem to be fully appreciated.
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Of course, there are reasons for the continuing misuse of NDGO meth-
ods, as stated in the previous two paragraphs. Many researchers are used to
getting a final answer from only one program run or from a short sequence
of just a few program runs with well-defined differences between them (e.g.,
solving an integral or a differential equation with decreasing step sizes, until
convergence, or executing a standard sequence of quantum-chemistry runs
with increasing method sophistication until a proper balance between accu-
racy and computer time is found). This is not possible in the NDGO area,
and the above-mentioned deviations from proper NDGO usage probably are
futile attempts to get back to more familiar situations.

Fundamental Take-Home Lessons

Despite the complete lack of technical details in this first section, several
insights could already be obtained that are of great importance for using
NDGO methods in practice:

• DGO methods

– deliver global optima with certainty

– and come with convergence criteria (in incomplete runs);

– but they have to cover all search space, hence they cannot avoid
exponential scaling with problem size. This makes them impractical
for most GO problems of interest in chemistry.

• NDGO methods

– are not designed for full search space coverage and should not be
used in this way,

– hence their results are never certain

– and they also lack a convergence criterion;

– thus using them properly is somewhat more difficult than it may
seem at first,

– but they are the only possibility, since series of local optimizations
will fail for all but the smallest problems.

A CLOSER LOOK AT SOME NDGO BACKGROUND DETAILS

Too Inspired by Nature

Despite good introductory literature on heuristics,18 finding good heuristics
for a given problem may seem to be a daunting task, particularly if new
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problems require new heuristics (cf. the “no free lunch” (NFL) theorem in
section “No Free Lunch”). Maybe for this reason, problem-external “inspi-
ration” has been a part of NDGO development from the start. For example,
simulated annealing (SA)19 was likened to the annealing process in metal-
lurgy and genetic algorithms (GA)20 to natural evolution. While the first of
these two analogies is physically largely correct, the second one may seem
natural at first but becomes somewhat dubious upon closer inspection.21

Most biochemists or molecular biologists would not see sufficient similar-
ities between GAs and what really happens with DNA, RNA, and proteins
upon cell division. And at a far more coarse-grained level, natural evolution
of species is not a GO at all; to survive and procreate you do not need to be
optimal in any sense, it clearly suffices to be better than your “neighbor” (in a
geographic sense, or in the competition over resources, or in evading preda-
tors). So why should something that provides winning (and losing) outcomes
in repeated neighbor contests be a good blueprint for global optimization
heuristics? Hence, it would be quite valid to ask if “genetic algorithm” is a
good name at all.

Things become much weirder with an arbitrary, quick look at the
NDGO literature, which abounds with strange new algorithm names. Even
Wikipedia22 provides an astonishing list of them, containing glowworm
swarm optimization (not to be confused with particle swarm and cat swarm
optimization), shuffled frog leaping algorithm, imperialist competitive
algorithm, intelligent water drops algorithm (not to be confused with rain
water algorithm), flower pollination algorithm, duelist algorithm, etc. On
Scholarpedia, Glover and Sörensen23 state:

The list of natural or man-made processes that has been used as the basis
for a metaheuristic framework now includes such diverse processes as bac-
terial foraging, river formation, biogeography, musicians playing together,
electromagnetism, gravity, colonization by an empire, mine blasts, league
championships, clouds, and so forth. An important subcategory is found in
metaheuristics based on animal behavior. Ants, bees, bats, wolves, cats, fire-
flies, eagles, vultures, dolphins, frogs, salmon, vultures, termites, flies, and
many others, have all been used to inspire a “novel” metaheuristic.

This is the product of uninhibited proliferation across 20–30 years.
More recently, however, this practice was heavily criticized23–25 as being
actually harmful to the field of NDGO research. The arguments are not
only that it is hard to sell something with funny names as serious science
but also that hiding algorithm design ingredients behind “nature-inspired”
nomenclature makes it unnecessarily hard to compare different (or perhaps
not-so-different) algorithm designs. It was even shown23 that, at least in
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one case, a seemingly “new” algorithm (coupled to a new “inspiration”)
only was an old algorithm dressed up in new language. Additionally, the
argument given in the previous paragraph also still applies: It is by no means
clear a priori why and how colonization by an empire or the behavior of
termites should have anything to do with GO, neither in an absolute sense
nor as an improvement over inspiration from river formation or swarms of
fireflies. However, instead of discussing such questions, most papers of this
kind only present their “inspired” algorithm and some tests of it. Therefore,
such “inspirations” may also serve as an excuse for not discussing why
algorithm design choices were made in just this way.

Nevertheless, maybe a few important insights can be distilled from
this otherwise embarrassingly wild mushrooming of “inspired” NDGO
algorithms: If we assume (without actual tests) that at least some of these
algorithms are at least somewhat different and that at least some of these
performed quite well in at least some of their benchmarks or applications,
then a possible conclusion could be that certain algorithm design choices
are not very critical. For example, all swarm-based algorithms and most
“animal-inspired” ones operate by iteratively improving not just one
candidate solution but a whole set of simultaneous candidate solutions, with
some sort of “information exchange” between them. Differences between
those algorithms usually pertain to small details of how this information
exchange is done and how it influences the next moves of the candidate
solutions. The mere existence of many different ways of arranging these
details could simply indicate that these details are not very important,
compared to other algorithm design decisions (like using one vs many
candidate solutions). Alternatively, they could merely reflect the need
to micro-adapt one basic algorithm framework to the varying needs of
different GO problem realizations (cf. the next section “No Free Lunch”). In
both cases, however, clarity would be better served by not giving different
names to such algorithm variations.

Actually, several frequently used algorithm design ideas can be readily
justified without recourse to “inspiration from nature”: In the GA-concept
of “crossover”, two candidate solutions are each partitioned into two or
more pieces, and then, new candidate solutions are formed by exchang-
ing some of these pieces between the old candidate solutions. Additionally,
it can be verified easily that a GA with crossover normally performs bet-
ter than one without and that both versions normally perform better than
a simplistic random search2, 26; in other words, crossover really enhances
GO efficiency. Obviously, this can be fairly consistently true only if such a
mixed reassembly of candidate solution pieces has a significantly nonzero
chance of producing a new candidate solution that is at least as good or even
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better than the old ones that provided these pieces. In other words, a piece
of a good candidate solution is a good piece, and assembling two or more
good pieces may result in an even better complete candidate solution. This is
possible only if the problem is approximately (or exactly) separable. Hence,
crossover exploits (approximate) separability.

In a similar vein, “mutation” in GAs (small parts of a candidate solution
are changed, to produce a new one) and the basic move in Monte Carlo with
minimization (MCM) or basin hopping (BH) are designed to get out of the
present local minimum (basin of attraction) and into another one nearby.
This exploits the frequently observed search space structure in which local
minima occur in clusters, resulting in rough funnels. The roughness prevents
local optimizations from reaching the bottom of the funnel, while this is less
of a challenge for GO-algorithms incorporating such mutation-like moves.

As a final example, both BH and SA use the standard Metropolis criterion
to allow not only downhill moves but also uphill moves, with a probabil-
ity that decreases exponentially for moves that would lead more and more
uphill. This assigns a nonzero possibility to climbing out even from the bot-
tom of one funnel into the next one, which may then turn out to be even
deeper. The strong imbalance between downhill moves (always allowed)
and uphill moves (exponentially improbable) ensures that there still is a
strong tendency to find the deepest sub-minimum in each funnel (after all,
we want to find minima, not maxima) and that the overall algorithm is better
than a random walk (which we would get if both uphill and downhill moves
would be always accepted). My personal suspicion is that this particular
uphill weighting (Metropolis) is used only because it is familiar from Monte
Carlo (MC) simulations and generates a Boltzmann distribution (canonical
ensemble) which seems to be reasonable for chemists and physicists. To my
knowledge, it has not been tested if this really is the best choice for GO
(instead of generating a canonical ensemble). I would not be surprised if it
turned out that the uphill probability weighting should also vary with search
space structure, upon addressing new problems.

Clearly, some of these explanations are (partially) speculative but com-
pared to “inspirations by nature” they have the advantage of being testable
and of providing a much more reasonable foundation for rational NDGO
algorithm design.

No Free Lunch

As alluded to above, in typical applications in the natural sciences, all local
optimizations of well-defined functions are created equal since they can be
modeled with sufficient accuracy by short, truncated Taylor series. Hence,
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they all have the same fundamental characteristics, can be treated with the
same set of standard algorithms, and these algorithms themselves17 can be
ranked according to their performance, in a largely problem-independent
way. A user can then simply pick the best-performing algorithm from this
list, possibly also taking into account secondary criteria (availability of
1st and/or 2nd derivatives, memory demands, etc.), and rely on getting
the promised performance—possibly diminished somewhat only when
starting points are chosen in which the truncated Taylor series is a much
worse approximation than elsewhere, but even such problems often tend to
disappear after several iterations. Note that the core achievement of such a
truncated Taylor series model is to get approximate but sufficiently good
information on what the function to be optimized does at points some dis-
tance away from a point x⃗i where we are now, based on information obtained
solely at x⃗i (and possibly at x⃗i−1 etc.), in a problem/function-independent
fashion. This works because these distances are small, and because the
truncated series is able to cover these small distances well enough (and in
a problem-independent way), providing sufficient quality assurance for the
next iterative step.

For GO, the situation is fundamentally different—for obvious reasons.
However, even seasoned GO practitioners tend to forget these differences
and their consequences sometimes, hence we emphasize them here very
strongly. When we stick to this picture of truncated Taylor series approxi-
mations to the function to be optimized, it is indeed obvious that the approx-
imation quality of a series truncated at any finite order will degrade by
construction upon venturing farther and farther away from the point about
which the Taylor series was constructed, even if the radius of convergence
of the series is technically infinite. In other words, information on the func-
tion to be optimized (values of the function itself and its derivatives) that is
confined to a finite, local region cannot tell us something definite about the
behavior of this function (far) outside of this local region, in the absence of
strong, additional information on this function (e.g., that it is a sine func-
tion times an exponential function). The example of a Taylor series is an
extreme one since the local information pertains to one point only, but the
core argument remains the same if we relax this to a region of actually finite
size. Therefore, for GO there is no general, problem-independent way of
extracting information about the behavior of our function at some distance
away from our local region—ultimately because these distances need to be
much longer and because attempting to build a general iterative optimization
scheme using a Taylor series truncated at an order far beyond the quadratic
one is highly impractical (or even impossible, if the true Taylor series at the
given point has a small, finite convergence radius).
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Therefore, instead of the problem-independent universality of general
algorithm performances in local optimization, we have the opposite thing
in GO: We should expect dependence of algorithm performance on the
problem at hand or on problem classes. With some GO experience for a
given problem class, we may indeed be able to extrapolate far-away function
behavior from local information, but chances are that this knowledge will
become partly or completely useless upon transition to a totally different
problem class. Given that search landscape characterization has come up
with vastly different landscape types (single funnels that are smooth or
rugged, multiple funnels, flat “golf courses” with widely spaced, small
holes, and several more4, 27, 28), it is intuitively clear that this is what we
should have expected.

Additionally, this vague expectation has been cast into a full-blown
theorem: the “no free lunch” theorem (NFLT)29 for search and optimization.
It essentially states that for the collection of all possible GO problems,
no GO algorithm is better on average than any other one. In other words,
if algorithm A beats algorithm B on average for a subset of all possible
problems, algorithm B will beat algorithm A by the same margin on average
over all other problems.

Note that “algorithm B” could well be blind, random search. Then, the
NFLT appears to be quite depressing since it seems to tell us that even if we
are very clever NDGO algorithm designers we will never come up with a
powerful “algorithm A” that consistently beats stupid, blind, random search.

However, glaring loopholes are offered by the words “on average” and
“all possible problems”. Upon second thought, the latter obviously contains
problems of little or no practical interest to us, for example finding the global
minimum in a 42-dimensional hypervolume of random noise or finding the
leftmost point on a finite line segment, but also these problems have to be
part of the problem performance averaging in NFLT. Thus, it can be suffi-
cient for us to have an efficient algorithm A that consistently beats algorithm
B (and/or random search) for the few problem classes of our interest while
we quietly ignore all other problem classes. This would not violate the NFLT.

Such arguments have led some people to believe (or to hope) that while
NFLT is nice, it has no practical value. Based on the arguments at the begin-
ning of this section and on the empirical fact that problems of interest have
been shown to have vastly different search space features, I tend to take
a compromise position, called “weak no free lunch theorem” (wNFLT):
Since there certainly are whole problem classes we can safely ignore, NFLT
does not tell us that it is futile to attempt any NDGO algorithm develop-
ment. However, NFLT does tell us that some of the fundamental expecta-
tions we might have (and which have been used frequently in many NDGO



�

� �

�

14 REVIEWS IN COMPUTATIONAL CHEMISTRY, VOLUME 32

publications) may not be justified. A few examples are mentioned in the
remainder of this section.

If NDGO algorithm A performs better on problem X than algorithm B,
it is not a priori clear that A will also beat B on problem Y—very definitely
for full NFLT, but with a high probability also for wNFLT. Nevertheless,
many published NDGO papers (for example, Ref.30) make such bold claims
implicitly or explicitly, or even the bolder one that if A beats B on problem
X, it will beat B on every other problem, too. This would imply that the
notion of a “universally best” NDGO algorithm is a valid one, but wNFLT
tells us otherwise.

Likewise, striving for “unbiased” search seems to be a naturally valid
aim in the NDGO area, and I am guilty of having advocated this in some
of my key papers (e.g., in Refs.31–35). However, both from wNFLT and
from the discussions in sections “Search Space is Vast” and “Fundamen-
tal Take-Home Lessons” (i.e., we do not want to cover all search space with
NDGO methods) it follows that on the contrary we have to be biased to
avoid the en scaling cliff and to perform better than blind, random search
(which is futile21) on the selected problem classes of our choice. Putting it
bluntly, a search heuristic is a bias. Hence, we should not avoid bias, but
we should avoid wrong biases for the problem at hand. How do we deter-
mine this? We may arrive at higher-level insights that help us here, but at
the end of the day, we even should check them directly: Does our favorite
NDGO algorithm equipped with our cleverly designed search-speedup bias
A really perform better than without it? (remembering wNFL, you do not
(only) want to do this for benchmark problems, but in particular (also) for
several representative instances of your target problem). Or we can pit A
against opposite-of-A, to lift the desired performance difference signal far-
ther above the inevitable noise.

NDGO Algorithm Comparisons

Comparisons between NDGO algorithms have been rare,30, 36 and fair com-
parisons have been essentially nonexistent. Sadly, this will likely remain so,
for several reasons. As discussed in the previous section “No Free Lunch”,
even with wNFLT it likely makes little sense to ask what “the best” NDGO
algorithm is; presumably, there only is a best algorithm for each and every
rather narrow problem class.

As further illustrated later (in section “Brief Summary of some Funda-
mental NDGO Algorithm Ideas”), many NDGO algorithm ingredients can
be combined at will in a “plug and play” fashion. Additionally, NDGO
algorithms come with several parameters (some have more than others) to
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“tweak” their action in a more fine-grained fashion. Hence, striving to com-
pare “pure NDGO algorithm prototypes” is not a well-defined aim. Is algo-
rithm X still the same algorithm after several changes and tweaks? Would
anyone ever use the unchanged/untweaked version of algorithm X in prac-
tice? How well does the performance of the “pure” algorithm predict its
performance after changes and tweaks? Instead you want to modify and
tweak your NDGO algorithm so that it works best for your current prob-
lem. In this sense, ease of use is not a very relevant criterion; an algorithm
with more tweak options should be better than one with less, which is the
opposite of what was concluded in, e.g., Ref.30.∗

Algorithm comparisons are also hard to make because it is not clear on
what to test. There is a big collection of multimodal, high-dimensional func-
tions out there that is frequently taken as test set, but as we have shown37

almost all of these functions are not challenging enough, compared to
real-life GO application cases of interest (in chemistry and elsewhere). A
reason for this observation is that these functions are defined via fairly
simple, closed-form expressions. This automatically imposes a high degree
of regularity on the (many) minima, which in turn is easily exploitable by
any decent NDGO algorithm. Also, for the same reason and by (w)NFLT,
good performance on these abstract test functions does not necessarily
translate into good performance for a given application area. Instead, it
appears to be more meaningful to do method development and method
comparisons for benchmark cases close to the respective application
area—for example, by doing benchmarks on Lennard-Jones38 or water
clusters if the application area will be atomic/molecular clusters.

Very rarely, our finding37 that those “standard” global optimization
benchmark functions simply are not challenging enough is explicitly
acknowledged in the literature and better benchmark functions are
proposed,39 often similar to those we and others proposed.37 Much more
frequently, however, our benchmark paper37 is cited for strangely wrong
reasons.36, 40 Sometimes it is even cited as a source for those benchmark
functions41, 42 which are then used for this purpose, although we did not
invent these functions and pointed out that exactly this way of using them
is not a good idea.

Barrier Crossing

An important subtask in global minimization is to get out of a current
minimum quickly (because it very likely is not the global minimum) and

∗Sorry, Stefan, for picking on your nice paper here.
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into a new one. By definition, there is an energy barrier between these
minima. Hence, when visualizing this process as a physical one at the
atomistic/molecular level, crossing this barrier becomes exponentially
harder with increasing barrier height. Hence, whole NDGO algorithm
classes (MCM,43 BH44, 45 and several further variations of this idea) focus
on this particular subtask. In this context, it has been argued44, 45 that
combining (“hybridizing”) such an NDGO strategy with local minimization
at each iterative step effectively transforms the original potential energy
surface (PES) into a different one, in which the usually smooth hills and
valleys have been replaced by a rectangular “staircase” form and (much
more importantly) some of the energy barriers have disappeared. This
argument concludes with the statement that this elimination of (some, not
all!) barriers obviously makes it easier to transition from one minimum to
the next (as seen from the original PES) and that this explains the success
of MCM/BH-like NDGO strategies.

This “staircase transformation” can work (in the sense of having this sim-
plifying effect) only if the Metropolis criterion used for the MC steps is
applied after the local minimization, not before it. This in turn means that
each and every attempted MC step has to be followed by a local minimiza-
tion (otherwise, steps rejected by the Metropolis criterion would not need
to be followed by a local minimization). However, local minimization (by
whichever algorithm) is computationally very costly compared to an MC
step since it is an iterative procedure involving many evaluations of the tar-
get function, its gradient (and possibly 2nd derivatives). As a rule of thumb,
in such global-local hybrid algorithms, 95–99% of the overall computer time
is spent in local minimizations, even for cheap force fields (FF). Therefore,
there is a significant prize to be paid for this “staircase transformation”. Fre-
quently, however, this turns out to be a good investment.

Interestingly, NDGO methods share this aim of “getting across barriers
more quickly than normally” with other areas of method development,
mostly pertaining to calculations of free energies, e.g., accelerated
molecular dynamics (MD), metadynamics, hyperdynamics, etc.46–48

Unsurprisingly, also several other important concepts of these areas overlap
or are the same, for example “collective variables” or “order parameters”,
“niches”, “broken ergodicity” and “deceptive landscapes”. Because these
two areas (NDGO and free-energy calculations) are largely out of touch
from each other, this potentially common vocabulary actually is used
in a quite disparate way. Collective variables and order parameters (as
low-dimensional description of structural changes upon going from one
state (or PES minimum/funnel) to another) firmly belong in the free-energy
camp. Deceptive landscapes and broken ergodicity describe the same thing
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(a PES with a narrow funnel containing the global minimum, separated by
a sizeable barrier from another, wide funnel that dominates the distribution
at least at higher temperatures) with different names, for NDGO and
for free energies, respectively. Niches are a NDGO (or more accurately,
GA/evolutionary algorithms (EA)) concept to fight against the domination
of wide funnels, somewhat akin to what metadynamics does for free
energies. On some rare occasions, at least this sharable nomenclature
is acknowledged and transferred.38, 49 However, quite obviously a more
intensive exchange between these areas would benefit both of them.

For a chemist, quantum-dynamical tunneling “through” a barrier is an
everyday concept. Therefore, it is not surprising that quantum tunneling
was frequently (re-)proposed (e.g., in Refs.50, 51 but also in many others)
as a clever trick to enhance NDGO performance by making it easier to pass
from one minimum to the next. Typically (as in the papers just cited), some
degree of success for these barrier-tunneling algorithms was reported, in
comparison with NDGO algorithms that have to “surmount” barriers. Char-
acteristically, Gregor and Car51 found good performance in locating global
minima of Lennard-Jones clusters with n atoms (LJn), but could not solve
the case n= 75, for which they reported “ergodicity problems”. Hence, this
performance is qualitatively on par with many other NDGO studies that
had similar problems with this (and other) notoriously deceptive two-funnel
cases (several are cited in the introduction of Ref.38)—although the premise
of these quantum-annealing algorithms was that such cases should become
significantly easier to solve, by tunneling from one funnel into the other.
Note that several other publications15, 38 (including earlier ones) managed to
solve the n= 75 case readily, using niching instead of tunneling. More recent
quantum-annealing overviews actually conceded that “there are drawbacks
to quantum annealing” and that “it is an important problem to reveal a differ-
ence in performance between quantum annealing and classical SA”.52 The
current expectation is that quantum annealing performed on a quantum com-
puter may be the winning combination,52, 53 once sufficiently many qbits
become available in real-life quantum-computer hardware. Once this hap-
pens, however, then also NDGO algorithms without tunneling may receive a
significant performance boost, or even DGO approaches may become prac-
tical for problem sizes of practical interest.

Independent of quantum computers, I personally think that while tun-
neling through barriers may appear useful, a more fundamental premise
of any “quantum”-based algorithm largely destroys its prospects for any
GO task: In some way, either directly or approximately (e.g., via path inte-
grals or ring-polymer dynamics), a Schrödinger equation has to be solved,
with the PES-function to be globally optimized in the potential energy term,
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resulting in a ground-state wavefunction which should have a significant
amplitude maximum at the global PES minimum. However, this wavefunc-
tion is defined over all space, so we have to calculate its value everywhere,
also at points at which it will then turn out to be essentially zero because
the potential value is very large there—which we cannot know in advance,
though. Therefore, according to section “Search Space is Vast”, such a calcu-
lation has to scale exponentially. Even worse, already checking/calculating
values of the potential itself on a dense grid of points across all space scales
exponentially. And after we have done that, why should we go on calcu-
lating, to construct a wavefunction and then check its maxima? We could
simply relax the lowest potential value we encountered to its proper off-grid
position and be done, without having obtained a single wavefunction value
and hence without any quantum-based tunneling whatsoever.

At first, things seem to be different if we do not aim at obtaining a
stationary ground-state wavefunction but rather start with a very compact,
initial-guess wavefunction (in one minimum basin or across several of them)
that is strictly zero elsewhere, and then follow its explicit time development.
Such a wavefunction could then really tunnel (time-dependently) through
surrounding barriers, successively finding new minima farther away from
its starting region. To avoid having to represent this wavefunction again
on an exponentially scaling grid covering all space, established methods
could be used that spread a compact support of grid points or local basis
functions only to regions where the evolving wavepacket currently is (or
will be) nonzero,54–56 even in tunneling situations. However, in contrast
to misleading textbook cartoons, in such a case (and almost generally)
tunneling does not proceed by the wavepacket gradually disappearing in
front of the barrier and reappearing behind it; instead, the wavepacket
moves gradually through the barrier,54 hence we also have to calculate
potential energy values in the barrier region, in contrast to a more naive
expectation. Additionally, as it is the nature of essentially all wavepacket
movement, the initially compact wavepacket will want to spread out in
all directions (with and without tunneling), and this alone will guarantee
exponential scaling. Finally, as above, also for this initially compact
wavepacket, potential energy values have to be pre-calculated at points to
which the wavepacket may spread next, so that the ensuing calculation of
the new wavepacket values themselves feels like an unnecessary add-on.
Putting it succinctly, even for a time-dependent quantum-mechanical
wavefunction, there is no way to “pre-conceive” far-away regions of low
potential energy values, without actually calculating these potential energy
values (and all in-between, and everywhere else).
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By the way, note that it is not clear that non-tunneling algorithms like
MCM/BH really have to go “over” all barriers in the intuitively assumed
sense: They proceed by MC-style “jumps” that only care about their ini-
tial and final points, not about anything in-between. And a jump can find
the next minimum only if it has left the catchment region of the first mini-
mum, i.e., if it landed at least somewhat “beyond” the barrier. Hence, even
if the jump could see the full barrier (i.e., in absence of the staircase trans-
formation), it would always appear lower than the barrier top really is. For
long jumps and/or narrow barriers, these barriers may even disappear almost
completely, independent of their heights. This may contribute to the repeated
findings that algorithms that incorporate “quantum tunneling through barri-
ers” apparently have a smaller performance advantage than expected over
those employing “classical” barrier crossing.

Old vs New Machine Learning

Currently, machine learning (ML), “deep learning”, neural networks and
similar methods are used everywhere for everything, frequently hailed as
the final answer to all problems and surrounded by a flood of mediocre
literature.57 Previously, in the 1980s–1990s, there was a similar but smaller
hype around EA methods. In fact, back then, EA methods were also called
“machine learning” occasionally. However, this should not fool us into
assuming that ML merely is a reincarnation of EA or that the two are closely
related, as sometimes stated.58 In fact, these two directions can be construed
as partially orthogonal: In essence, ML combines suitable representations
(or possibly several layers of representations) with brute-force big-data
interpolation, employing interpolation functions that are intentionally very
flexible. Crucially, before any ML can start, these big data have to be
available already and will be used in their entirety. Hence, by construction,
ML has a prescribed field of applicability, spanned by these input data, to
which it should stay confined. Turning an interpolation into an extrapolation
(beyond the realm of given data) has always been highly dangerous, and
this is still true if the interpolation method bears fancy, modern names
(and even more true if the interpolation function is highly flexible). In
contrast, EA-like methods (or more generally, also other NDGO algorithms)
are all about inferential and extrapolating leaps into the (yet) unknown,
purposefully starting from small data and typically avoiding to turn them
into truly big data.

After having stated these conceptual differences, it is fair to point out that
there also are commonalities. Choosing a suitable representation surely also
is helpful for NDGOs. And of course, the aims of NDGOs and ML can also
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be seen as closely related: In both cases, we try to infer “new information”
from what we already have. Finally, in both cases and elsewhere, extrapola-
tion reliability improves substantially if a priori information is available on
what to expect in as yet uncharted regions (which implies that it is of course
possible to design ML versions with extrapolation in mind, necessarily by
restricting functional flexibility).

While there surely are many impressive ML successes, even in hype
phases we should remember that true complexity cannot be tackled by one
single approach, across all conceivable application areas. In this sense, I
expect considerable benefits from combining modern ML techniques with
“old-fashioned” nondeterministic search. In my opinion, this is one possi-
ble answer to the lament58 that “the hundreds of thousands (or more) data
points required for deep learning will be unavailable in many drug discov-
ery projects. Alternative methods for equally robust feature extraction and
hypothesis generation from small data sets need to be identified.” (similar
difficulties exist in many other ML-application areas). In fact, a few steps in
this direction have already been made.59–64

Take-Home Lessons for NDGO Background Details

• NDGO algorithms continue to be advertised as “inspired by nature”,
but this should stop since it has become detrimental to the whole field
(e.g., it introduces apparently huge differences between closely related
algorithm variations)

• NFLT tells us that all NDGO algorithms perform the same when aver-
aged over all possible application cases. This may not be strictly appli-
cable if we are interested only in a subset of (related) application cases,
but it reminds us that the seemingly clear notion that one NDGO algo-
rithm is “always” better than another one may be ill-founded and that
adapting a standard NDGO algorithm to the specific case at hand may
reap significant performance benefits.

• “Unbiased” seems to be a nice-to-have feature, but NDGO algorithms
have to embrace bias to avoid being DGO algorithms. Test your bias
ideas to find the good ones for your problem.

• For the above NFL reasons, comparing NDGO algorithms is not easy
and the results of such comparisons probably are less transferable than
we think. Malleability of an algorithm may be more important than
benchmark performance (given some degree of the latter).

• There are interesting relations between global search and free-energy
calculations, calling for fruitful cross-fertilization.
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• Quantum tunneling through barriers only seems to be an attractive idea
for NDGO.

• NDGO and ML have some similarities but also differences; therefore,
combinations between the two will be fruitful.

GENERAL GUIDELINES FOR NDGO APPLICATIONS

Brief Summary of Some Fundamental NDGO Algorithm Ideas

Given the dazzling array of “inspired” NDGO methods, any attempt to really
survey them is too painful. Instead, as reference for the following text, here
is a brief reminder of a few key ingredients and their relations to some of
the main methods:

Randomness: Obviously, fully random, blind search is not a good idea21

if our problem has some (albeit yet unknown) structure. And zero
randomness is rarely realized in NDGOs; even the otherwise fully
deterministic MD-SA usually starts from randomly selected points.
Most of the successful NDGO paradigms are somewhere on the broad
spectrum in-between.

Move class: How to change one trial solution into a modified one at each
iterative step; usually with some randomness thrown in.

Population size: NDGOs can operate by iteratively improving (or at
least changing) a single trial solution (population size 1), or several of
them simultaneously (population size> 1). Obviously, the latter dif-
fers from several independent runs of the former only if there is some
“on the fly” information exchange between the trial solutions within
the population.

Kind of information exchange: Typical choices are (i) cut trial solutions
into smaller pieces and exchange some of these pieces between dif-
ferent trial solutions (“crossover” in the GA/EA language), (ii) inter-
polate between trial solutions. Of course, this overlaps with the move
class concept, to some extent.

Hybridization with local search: This can be done always (at each
NDGO step), sometimes or never, and in principle local optimization
also can or cannot change the current location of the trial solu-
tion in search space (although the former seems to be the typical
choice now).
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Memory: So-far-best function values of iteratively changing trial
solutions or of the whole population can or cannot be stored and
used internally. Of course, it would be self-defeating not to store the
best-so-far function value externally (even if it is not used internally).

Diversity: In NDGOs with population size >1, design attempts to delib-
eratively prevent several or all trial solutions from meeting in a single
minimum basin not escaping again.

For example, if the population size is 1 and moves are random (MC)
jumps with a Metropolis criterion, local search is done at each step (and
changes the trial solutions’ position) and there is no memory, you have
MCM/BH. If the population size is> 1, moves are random MC-style
jumps (typically without a Metropolis criterion) of single trial solutions
(“mutation”) and exchange of pieces between (usually two) trial solu-
tions (“crossover”), you have a basic GA or EA (to which local search,
memory (“elitism”) and diversity (“niches”) can be tacked on). In contrast,
if random “mutations” are replaced by a more “kinetic movement” and
“crossover” by influencing this movement by an individual and collec-
tive memory, you land somewhere in the broad array of swarm-based
NDGOs (particle-swarm optimization (PSO), ant-colony optimization
(ACO), etc.).

NDGO Method Design Choices

As to be expected from sections “No Free Lunch” and “NDGO Algorithm
Comparisons”, fair comparisons between NDGO algorithms are rare and
hard to make, and their outcome likely is not general but problem-specific.
Nevertheless, general superiority of algorithm X over algorithm Y has been
claimed on many occasions, typically by developers of algorithm X—which
is psychologically understandable but tends to confuse potential users that
are not NDGO experts.

To take some heat out of the debate and to provide some user guid-
ance, it is a good start to realize that some apparently controversial topics
may be less important (or even nonissues) and/or can be decided via other
considerations.

For example, in the early decades of GA/EA developments and applica-
tions, it was the accepted standard that trial solutions (“individuals”) had to
be “represented” in some abstract fashion (closer to the presumed biological
“genetic” inspiration of DNA strings). Long serious debates discussed the
optimal nature of this representation, concluding that, e.g., strings of binary
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numbers were better than strings of decimal numbers,∗ because this would
provide more leverage to “crossover” and “mutation” operators. However,
this discussion gradually disappeared at the end of the millennium, and in
cluster structure optimization, it became standard to operate on real-number
strings or even directly on cluster (sub)structures in their 3D-space (“no rep-
resentation”, also known as “phenotype representation”15, 65–67). With hind-
sight, it is clear that it should be possible in principle to reproduce exactly
what operator A does in representation X, upon a switch to representation Y,
if the operator is changed accordingly. Or, viewed differently, certain opera-
tions are easier to realize in one representation than in another one. However,
an additional advantage of phenotype operators acting directly on clusters
in their 3D-space is that they retain the 3D-neighborhood relations already
present there—which is quite hard to realize in a 1D string representation:
To achieve this in a robustly transferable fashion, advanced concepts like
“linkage learning”68, 69 have to be invoked, which come with their own bag
of additional problems.

It is frequently stated70, 71 that NDGO algorithms need to maintain a
proper balance between exploration (venturing into new regions of search
space) and exploitation (finding even lower points in the present basin or
funnel). While this is obviously true, it is frequently difficult to pin down
which algorithm features are responsible for which of the two and to which
extent, when other algorithm ingredients than those of the move class are
examined.72 Also, qualitative search space features may change from one
problem instance to another, and this should require a concomitant adaption
of the exploration–exploitation balance—but this can hardly be known in
advance, before attempting to solve the problem instance. Therefore, explo-
ration vs exploitation is a useful qualitative description, but hardly a quanti-
tative algorithm design prescription. In extreme cases, too much exploitation
can result in the “premature convergence” already mentioned above. A sim-
ple expedient against that is to check not only the single best end result of a
long run, but to keep watching how the “population” (best, medium, worst
trial solutions) changes during the run, at least when applying NDGO to a
new problem instance.

An important part of “exploitation” is to find the bottom of a single
(smooth) basin of attraction. The repeated finding is that NDGO algorithms
are not good for that at all—unless combined (“hybridized”) with local
optimization (which MCM/BH always is, by construction). As pointed
out above, however, then >95% of the overall computational effort goes
into this local search—which is likely wasteful in the initial stages of the

∗Both representations hardly have any relation to how proteins are represented on DNA strings.
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global search, where all local minima found are much worse than the global
minimum. Hence, if possible, switching off local search in the initial stage
tends to be a good idea that can save substantial computer time without
deteriorating the final results too much. As discussed in section “Barrier
Crossing”, skipping local search forgoes the potential advantages of the
“staircase transformation”, which may be tolerable if search jumps are
large enough to cross barriers easily. In the “end game”, doing local search
ceases to be optional, and even fairly tight convergence criteria may become
necessary: For larger atomic and molecular clusters, surprisingly many,
structurally diverse minima exist within small energy intervals.

MC-style “mutation” moves (but also “crossover”-style information
exchange moves) in global structure optimization can easily move several
atoms too close to each other, resulting in strongly repulsive forces. Hence,
an ensuing local optimization (in a global-local hybrid algorithm) should
be able to lead the structure back to reasonable interatomic distances.
However, it can also happen that the local optimization then “overshoots”
into distances that are too long, corresponding to dissociation. If the
attractive gradients there are too small, a continued local optimization
will not be able to recover from that. Even if a recovery is possible, such
excursions are an unproductive waste of valuable computer time (which
is spent almost exclusively on local optimizations anyway). Hence, it is
far more economical to pre- (and post-)screen every local optimization
with a collision and dissociation detection (CD/DD)34 that simply discards
collided or dissociated structures and costs far less than a typical local
optimization, even at the FF level. Of course, it is then paramount to
properly parametrize these CD and DD operations, to avoid discarding
good structures or structures that easily revert to good ones after short
local optimizations, but this effort is well invested compared to the gains in
computer time.

With NDGO on FF, it frequently happens that FF regions are explored
that are never visited in MD (at reasonable temperatures). This is not neces-
sarily a bad thing in itself but rather a sign of the exploratory power of the
NDGO. However, it can have disruptive effects, for example, with strongly
negative (infinite) energy contributions from a single FF term, leading to
fusion of two atoms. This fatally distracts the search into these unphysical
regions but has the advantage of being easily detectable. Possible remedies
are to “patch up” the FF so that these unphysical FF branches are eliminated
(while not affecting the physically correct FF regions), and/or to employ a
CD with well-adjusted lower atom distance limits.

From section “Search Space is Vast” it is clear that GO scales expo-
nentially, for fundamental reasons. For the same reasons, calculating
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interatomic forces by exact ab-initio quantum chemistry (full configuration
interaction in a sufficiently large one-particle basis) also scales exponen-
tially, and still scales badly (formally at least n3 to n5) if approximate
treatments like density functional theory (DFT) or Møller-Plesset pertur-
bation theory of second order (MP2) are employed that cannot work well
for systems with strong electron correlation. Hence, combining these two
by performing NDGO directly at the low-end ab-initio or DFT level73–75

may be brave and well-intentioned but hardly is a wise choice. Only very
small system sizes are accessible in this way,73–75 near the crossover region
between legitimate use of multistart local search and true superiority of
NDGO global search.2 Simply put, the huge expense of ab-initio or DFT
methods prevents the global search from achieving enough search space
exploration. Within the NDGO paradigm, the only way to check this is
doing more and longer runs, which is not possible at this expense level.
A presumably more efficient and certainly better testable approach is
a two-level strategy76, 77 where the global search is performed with an
approximate method, followed by local post-optimization of the best results
at the DFT or ab-initio level. There surely is a considerable danger that
the lower-level global search is misled by quantitative or even qualitative
distortions of the PES at this approximate level. However, this can be
mitigated in several ways: All NDGOs deliver not just one final global
minimum candidate but also large collections of local minima, making it
easy to check the energy ordering and energy differences between them at
higher levels of theory. From our experience, such checks are mandatory
for a 2-level strategy, and these then offer a good way to judge the degree
of (dis)similarity between theory levels. If the differences are too great, it is
possible to adapt the lower-level description to this particular system under
study, which essentially always generates a far better and more reliable
description than the usual compromise approximations that merely try
to achieve mediocre descriptions across large areas of chemistry. In any
case, the possible gains in performance and/or system size are huge and
well worth the additional human effort. For example, for self-assembly
at surfaces, system sizes and agreement with experiment achievable with
simple FFs on small-scale local computers78 surely will not be addressable
with NDGO at the DFT level on national supercomputers73–75 within the
next 10–20 years.

Sometimes73, 75 performing NDGO at the DFT (or another semiempir-
ical) level is justified by claims that a FF description cannot include the
quantum-mechanical nature of electrons that clearly is necessary for describ-
ing chemical bonding and/or the making and breaking of bonds. However,
in a FF-description electrons have been coarse-grained away completely,
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only their final effects (providing attractive and repulsive forces between
nuclei) survive and are captured by suitably parametrized functions. From
this perspective, it even is misguided to call FFs “classical-mechanical”; if
anything, they are a mixture of classical and quantum-mechanical notions,
as exemplified by typical harmonic oscillator or Coulomb terms, which
may justifiably be called “classical”, and Lennard-Jones terms, which have
been derived from a purely quantum-mechanical model treatment.79 Since
the Schrödinger equation and the Hamiltonian operator are linear and
quite well-behaved, there is no intuitive reason to assume that electronic
eigenvalues as functions of nuclear coordinates cannot be described by
suitably chosen model functions. This intuition is rigorously supported
by theorems that show that every quantum-mechanical distribution can
always be modeled with “classical” FFs, cf. Ref.80 and references therein.
The particularly weird notion that FFs cannot describe the making and
breaking of bonds is refuted by the mere existence of reactive FFs,81 which
can be fitted not just to DFT data of equilibrium structures35, 82 but also to
high-end multireference ab-initio data83 for bond-breaking situations.

Only a few NDGO algorithms, namely SA and its variants, are eminently
serial; all others are not just parallel but in most cases even embarrassingly
parallel, in particular all the function evaluations in the PSO and EA/GA
paradigms. For many years, however, the latter were dominated by a
prescription based on “generations”70: A generation consisted of many
applications of crossover and mutation operators, acting in parallel on
many trial solution pairs (“parents”), producing an even larger number
of “children”. These were then compared, based on their function values
(“fitness”), and the best ones were selected to constitute the next generation.
As noted in Ref.31, these comparison and selection phases produce serial
bottlenecks in the otherwise embarrassingly parallel calculation. However,
these can be eliminated by replacing the generational GA/EA model
with a “pool model”,31 in which crossover/mutation, fitness calculation
and selection are grouped into a small subtask involving only a few trial
solutions. These subtasks can then again be parallelized efficiently, since
fitness comparisons of the new children to the other trial solutions present in
the pool and possible insertion of the children into the pool (both of which
disrupt parallelizability) only take a negligible amount of time, compared to
function evaluations (even on a cheap FF level). Note that such redesigned
EA/GA models were not invented in Ref.31 or somewhat earlier works84

(and for sure not in even later works73, 75) but were rather well-known in the
earliest GA history, under the name “steady-state GA”. Because back then
computations were essentially always serial, the different parallelization
efficiencies of steady-state and generational GAs were noticed only much
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later.31, 84 In fact, due to its random nature and to many steps that are to a
large extent independent of each other, GA/EA methods can (and probably
should) be implemented not with old-fashioned, rigid message-passing
interface (MPI) paradigms but with advanced parallelization techniques
that allow for heterogeneous compute nodes on independent machines,
for hardware fail-safe operation and for incredible (and incredibly simple)
malleability/adaptability in parallel resource consumption.85, 86 Your
high-performance computing (HPC) administrator may not be amused
at the low amount of internode network traffic that your highly parallel
NGDO run generates, since this hardly justifies the money invested for this
network, but from your perspective, this is yet another big benefit (that
most NDGO algorithms share).

The fundamental idea to break a big problem into smaller subproblems
that are then solved iteratively also is an old one in the NDGO literature87

and has been resurrected several times, cf. Ref.88 and references therein.
Quite obviously, this can work well if the pieces-breakdown corresponds to
near-separability, and chances for failure are high if this condition is not met.
Since such strategies have not had sweeping success, one may suspect that
systems amenable to such an easy and obvious partitioning are rare, at least
for small to medium-sized cases (for really large ones, NDGO applicability
is questionable, and success of such a divide-and-conquer technique will be
hard to check for lack of true benchmark cases).

Similarly, it has been rediscovered and reused repeatedly that (unsur-
prisingly) huge performance benefits accrue upon drastically cutting
down on search space size. An extreme case of doing that is to discretize
space, i.e., transitioning from continuous coordinates to (predefined) grids.
This has been done in the earlier NDGO years, e.g., for LJ and Morse
clusters89, 90 and for protein folding91 but also more recently for aggregation
on surfaces,92–94 and recently again for LJ clusters95 where it made large
clusters up to n= 1000 accessible to NDGO.

A similarly frequently rediscovered and reused idea is to build starting
structures for series of local optimizations for cluster size n by attaching
another atom/molecule to the best cluster structures found previously for
cluster size n − 1. For the LJn benchmark case, this is a great idea for very
many sizes, as discovered a long time ago,96 but necessarily fails for most
of the interesting (hard) cases, for which adding one atom would have to
trigger a restructuring of the whole cluster, crossing lots of high-energy
barriers. Finding such transitions efficiently would require differently spe-
cialized global search methods.97

In global cluster structure optimization, it was clear from the outset
that low-energy structures are not the only possible optimization target
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and that also targets combining several (vastly) different things can be set,
but this simply was not done very frequently, compared to pure search for
low-energy structures. Therefore, observable-targeting NDGOs have been
rediscovered several times in different communities26, 98–104 but still are
comparatively rarely used. Note, however, that the additional benefits are
substantial: In global cluster structure optimization, if we have found a
global minimum-energy structure with NDGO methods and it agrees with
the one determined experimentally (directly or indirectly), we can conclude
additionally that the experiment was at equilibrium conditions, i.e., the
experimental cluster preparation did not influence the cluster structures
at the detection stage. If there is disagreement, there typically is little we
can conclude, besides diagnosing the nonequilibrium situation (unless the
clusters are very small)—simply because the number of non-global minima
is overwhelming, and their “density” per energy unit increases dramatically
with increasing energy, while simultaneously the amount of experimental
data is likely insufficient to discern between all the possible ways calculated
properties can be averaged over local minimum-energy structures (with
varying weights) to optimally match the experimental data. Of course, this
can be turned into yet another (global) optimization problem, as illustrated
in Ref.98 for a real-life test case, with an infrared (IR) spectrum as target
property (which is a huge amount of data, compared to a single number
like, e.g., a cluster dipole moment). In this example, observable-targeting
NDGO could locate a single (high-energy) cluster structure that provides a
better fit to the experimental spectrum than a synthetic spectrum averaged
over the 500 lowest-energy local minimum structures obtained from a
standard lowest-energy-targeting NDGO, with weights optimized to fit this
experimental spectrum. Of course, this still does not prove that this single
structure is correct, and not a different mix of yet several other structures,
but it does provide a first-order guess toward a property–structure relation
in a nonequilibrium situation.

In NDGO algorithm development, useful paradigm-combi-
nations49, 104, 105 should be more welcome than sticking religiously to
ad hoc algorithm subclass definitions. We have had the latter for a long
time, so that the basic algorithm classes (MCM/BH, GA/EA, etc.) probably
cannot be improved further without leaving their originally set, arbitrary
definition domains.

NDGO Tips for Absolute Beginners

NDGOs still are not broadly available in standard chemistry program pack-
ages; or if they are, then typically only in fairly simple standard forms.



�

� �

�

NON-DETERMINISTIC GLOBAL STRUCTURE OPTIMIZATION 29

As argued here frequently, this is suboptimal, but it may suffice to get started.
A better approach for real production work would be to combine a standard
stand-alone NDGO with the energy/force engine of your choice and then
tune the former for your given GO problem (where “tuning” does not only
mean tweaking parameter values that happen to be available in this particu-
lar NDGO method, but also freely borrowing ingredients from other NDGO
methods).

Since NDGO algorithms and their handling are fuzzy by design, it is
a good idea to start with test cases for which global minima are known.
For cluster structure optimization, the best test case available still is LJn.
Putative global minima for n= 2–1000 and their energies are available
online.106 Great features of this test case are that the potential energy func-
tion is extremely simple, so coding it yourself really is a realistic option,
and that by simply choosing different cluster sizes you obtain both very
hard instances38 with deceptive landscapes (n= 75,76,77,98,102,103,104)
and fairly easy ones despite nontrivial sizes (e.g., n= 55). Hence, this is an
ideal training ground to become acquainted with the behavior of NDGOs
in a realistic setting—and this is not easy if you have only dealt with
deterministic computing so far.

You will then experience quickly that the NDGO-typical absence of a
true convergence criterion is challenging. Without knowing what to expect,
you will have to choose in advance how many NDGO steps you allow
(overall, or in the end while the best minimum found so far does not change
anymore). And once you have done several runs, you will realize that one
single NDGO run does not tell you anything. In cases where you do not know
the answer in advance (i.e., not for LJn with n < 150 with near certainty),
to get something like an (uncertain) estimate of the chance you have found
a good candidate for the global minimum, you will need to do several runs
(5, 10, 20,… ), varying your initial structures and/or the random num-
ber seed, and establish the percentage of runs in which the same,
so far lowest-energy structure was found. If this is 100%, chances
are pretty good that you have obtained an excellent global minimum
candidate—independent of problem size and number of steps: In partic-
ular, for a huge search space and/or far too few steps, finding the same
lowest-energy structure in each and every run is almost impossible. Far
more likely in this case is that 0% of your runs find the same lowest-energy
structure, indicating that you are very far away from “global convergence”
and that the lowest-energy structure you have found so far presumably is
not a good global minimum candidate. In fact, these seemingly simplistic
percentages are a good indicator for you and others how far to trust your
results. Hence, you should report them in your publications, even if you
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see many NDGO papers out there that omit doing these simple tests and
reporting these percentages.

Luckily, there is more orientation for you than a few final numbers: While
still struggling with a new GO case (here energy minimization of structures),
in every single run always follow how your NDGO algorithm behaves during
its iterations, looking at least at two things: function values (energies) and
structures. Record at least the best-so-far function value vs iteration number
and examine it periodically while the algorithm is running. You should see
an exponential-like fall-off. This is not a feature of any particular NDGO
algorithm but simply what to expect in general: In the beginning, finding
lower-energy structures is simple and happens frequently; this inevitably
changes when the algorithm proceeds. While you still are in the steep fall-off
region, the run should continue. If the decrease is leveling off and becomes
a flat plateau, it is time to stop the run and start a new one. This is typically a
better allocation of your computing resources than continuing the run even
further. In theory, your move class should be good enough to break out of
such a stagnation, but in practice possibly not, last but not least because
getting further improvements has to become harder and harder.

In population-based NDGOs, it is also a good idea to examine not only
the best-so-far function value but other population-based values, e.g., the
mean or median value across the population and the worst one. Additionally,
not just the function values but also the actual structures themselves should
be examined, again across the iterations. If diversity measures (niching) are
present, do examine if they really work as intended. All this provides very
valuable information on the NDGO exploration and exploitation and how it
can be improved for the problem at hand.

Finally, if you have designed your own NDGO (or have tweaked the
NDGO code written by someone else), be again fully aware of the fact that
NDGO methods are fundamentally different from deterministic computing
in yet another respect: In the latter case, you presumably are used to
even small bugs advertising themselves by end results (or intermediate
results) that quite obviously cannot be right. This can be very different for
NDGO methods: They are designed to find ways around obstacles, even
in challengingly weird, high-dimensional search spaces. Hence, for them
a program bug (unless it leads to self-advertising runtime exceptions like
an array index out of bounds) is just another obstacle that could as well be
an intended, legitimate feature of the search space. In other words, your
NDGO program may be seriously buggy without you even noticing. Yes,
there may be some bug-induced performance degradation, but without
a direct comparison (due to wNFL: for this particular problem instance,
performed with a correct implementation of this particular NDGO method
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variant) you simply have no idea what the optimal performance could
be. Hence, my hard-earned advice is to test all program ingredients in a
non-NDGO setting before incorporating them into the full-blown global
search NDGO program frame. (Note that this is totally independent of the
random numbers that likely are involved in several locations in the code.
Of course, for testing and debugging you want a fixed random number
seed anyway, not the “quasi-random” one usually used in production
runs, derived from the current date-and-time or from an internal machine
counter.)

Things to Do, and Pitfalls to Avoid

• Avoid being overwhelmed by the bewildering, broad array of “in-
spired” NDGO methods; use the keywords in section “Brief Summary
of Some Fundamental NDGO Algorithm Ideas” to filter out the
differences and similarities that matter.

• If possible, freely choose your favorite ingredients across all NDGO
methods, satisfying both exploration and exploitation. Religiously
sticking to one “best” method may make little sense when tackling
a new problem class (cf. section “A Closer Look at Some NDGO
Background”).

• Local search beats global search within a given basin of attraction, by a
wide margin. And the staircase-transformed PES is easier. Therefore,
if you can afford to combine local search with global search, do so. If
the local search is too expensive, try to sneak it in at least in the later
stages of global search.

• Do not rely on local search to domesticate even the most wildly weird
outcomes of your global search moves; this is too expensive. Instead,
weed out the really bad ones directly (CD/DD).

• For global cluster structure optimization, do not be afraid of using a
2-level strategy, combining exhaustive global search on a cheap level
of theory with local post-optimization of the best results at a high level
of theory. For example, FFs have a 5–6 orders of magnitude speed
advantage compared to quantum chemistry (including DFT)—which
you badly need to explore the vast search space and/or to address sys-
tems that are not trivially small.

• NGDO algorithms are embarrassingly parallel. This is ideal for the
typical many-core HPC hardware of today.

• If you have prior information on your problem (predefined posi-
tions, adsorption poses, etc.), use it—but remember that this is
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high-risk / high-gain: On the en cliff, even seemingly small steps
downhill bring huge performance benefits; but you are forbidding
access to huge search-space regions, so you should better be sure that
the global minimum is not hiding there.

• To match nonequilibrium experiments, you may want to try
observable-targeting NDGO methods.

• If this is your first venture into NDGO territory, you first need to gain
some familiarity with applying them, for a test case closely related to
your ultimate target problem. For cluster structures, it is obligatory to
try both simple and hard cases of LJn and/or (H2O)n.

• Never judge single runs. Instead, do batches of runs for the exact same
case and examine (and report) their results statistics.

• Unless you are very experienced, do not only look at the final results of
each run but also examine how characteristic items evolved iteratively
during the run: best, average, worst energies; best (and some of the not
so good) structures; etc.

• Be aware that your NDGO program may have bugs although it seems
to perform quite well. Searching for bugs is much easier if code pieces
are examined in a suitable non-NDGO mode.

RECENT HIGHLIGHTS

In this final section, a few notable publications and insights from recent years
are pointed out that have not been mentioned in the above text. Complete
reviews already are available.73, 107–109 Additionally, there are very com-
prehensive treatises110 on several NDGO classes, good guides to NDGO
algorithm design,111, 112 and successful attempts to combine both.113

In many areas of chemistry, NDGOs are well-established or even indis-
pensable standard tools. One of them is their traditional application field of
global cluster structure search in vacuo, which is still done quite extensively,
e.g., for H+(NH3)n, n= 18–30, with IR spectra calculation114 or for Sin with
density functional tight-binding (DFTB) and DFT, up to n= 80.115 Another
such field is crystal structure prediction (CSP), where huge blind tests116

and refined NGDO techniques117 are commonplace. Although CSP still is
challenging,118, 119 it is considered to currently make the transition from an
unsolved basic science endeavor to a standard applied science method.120

For more than 10 years, finding low-energy surface reconstructions
and low-energy structures of clusters on surfaces also has been in the
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realm of NDGO applications.121, 122 Those pioneering works were fol-
lowed by several similar algorithms and application studies,109, 123–125

ranging from simple benchmark systems126 to surface assembly of
complicated tether molecules,78 and from EA methods78, 109, 124–126 to
MCM/BH.127

Besides low-energy structures, there are many more possible
optimization objects and targets, including, for example, force-field
parameters,35, 82, 128 external electric fields for abstract catalyst design,129, 130

exploration of reaction networks,131, 132 and many more.
It would be very helpful to associate different energy landscapes with dif-

ferent system properties. To some limited extent, this is already possible. For
example, single/double/multifunnel landscapes have been associated with
structure-seeking and multifunctional proteins.133, 134 It would also be very
useful to be able to “pre-view” the search landscape before attempting GO
on it, so that an appropriate GO algorithm can be selected beforehand. With
disconnectivity graphs,5, 133, 135 a simplified view of search space structure
is available for structure optimization. Obtaining this, however, requires an
exhaustive search. Interestingly, it is possible to generate the next step (i.e.,
transition paths and activation energies between these minima) not only by
brute-force136, 137 at high computational expense but also to precalculate this
approximately97, 138 with much less effort, i.e., to find out if the more accu-
rate but very costly full calculation will be useful or not.

In a blog post, Weise139 has provided a nice collection of EA pro and
contra arguments, which essentially also apply to most other NDGO algo-
rithms and echo several of the general statements in the present chapter. They
provide a nice background to the frequent observation that there appears to
be a big gap between claims in academic research on what can be done
with NDGOs and the extent to which they are really used in the real (busi-
ness) world.140 As argued above, part of the reasons for this discrepancy may
be that in contrast to local optimization algorithms NDGOs either are effi-
cient but system-specific or general-black-box but fairly inefficient. Hence,
NDGO novices frequently tend to try an NDGO only once, in standard form,
and then simply conclude that “algorithm X does not work” after this one
attempt, without any further tests or modifications. However, from all the
above text, it should be obvious that usage of a standard NDGOs for a given,
specific problem may easily lead to an efficiency that is suboptimal by a
few orders of magnitude. Therefore, I hope that the present text inspires
NDGO newcomers to improve upon their first-shot NDGO attempts for their
given problem by problem-specific adaptions and a substantial amount of
experimentation—the potential benefits of this can be great.
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INTRODUCTION

Over the past decade, researchers in computational chemistry have wit-
nessed a resurgence in the development and application of semi-empirical
methods for treating large chemical/material systems. In particular, the
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density functional tight binding (DFTB) formalism1–4 has garnered
immense popularity for probing the electronic properties of biomolecules,5

molecules/clusters with numerous conformations,6, 7 and immense
nanostructures.8 While classical molecular dynamics can handle hundreds
of thousands of atoms, it cannot provide a first-principles-based description
of large systems at a quantum mechanical (i.e., electronic) level of detail.
At the other extreme, conventional Kohn-Sham density functional theory
(DFT) methods can access the true quantum mechanical nature of matter,
but they cannot tackle the large sizes and complex chemical environments
relevant to many of the large systems mentioned previously. To bridge
these immense size scales, the DFTB formalism was developed to probe
these chemical/materials systems with a viable approach that is both
computationally efficient and quantum mechanical in nature.

While there have been a number of good reviews on DFTB,9–12 in this
chapter, we focus on the application of DFTB to electronic-excited states,
which has attracted significant attention for extending this computation-
ally efficient approach to the time domain. Although the field of chemical
dynamics is incredibly vast, we concentrate our attention on the applica-
tion of DFTB to real-time electron dynamics and nonadiabatic dynamics
calculations. We first give a brief discussion of the underlying theory in
each of these areas, followed by a didactic tutorial on simple molecules or
model systems to show how these computational approaches and techniques
are carried out in practice. These simple tutorials are written in a stepwise,
instructive fashion to provide practicing researchers a detailed “look under
the hood” to obtain a deeper understanding of how these techniques can
be used to understand, probe, and even control the chemical dynamics of
large systems. We then conclude each of these respective sections with a
“real-life” application of these DFTB-based approaches on large dynamical
systems to demonstrate their usefulness in contemporary areas of chemistry
and materials science.

REAL-TIME TIME-DEPENDENT DFTB (RT-TDDFTB)

Theory and Methodology

Over the past few years, the use of real-time time-dependent DFTB
(RT-TDDFTB) has attracted significant attention as a promising approach
for extending the DFTB formalism to the nonequilibrium electron dynamics
of extremely large chemical systems. As specific examples, this method
has been used to calculate photo-injection dynamics in dye-sensitized
TiO2 solar cells,13–15 optical properties of photosynthetic pigments,16, 17
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molecular aggregates,18 graphene nanoflakes,19 DNA intercalation
complexes,20 many-body interactions in solvated nanodroplets,21 and
excitation energy transfer (EET) dynamics in plasmonic arrays.22, 23 To
carry out an RT-TDDFTB dynamics calculation, one must first compute
the ground-state Hamiltonian, overlap matrix elements, and the initial
single-electron density matrix within the self-consistent DFTB approach.
The open-source DFTB+ code24 provides a practical way to obtain these
quantities, and a more detailed description of ground-state DFTB can be
found in previous publications.4, 25

Once the ground-state Hamiltonian, overlap matrix elements, and the ini-
tial single-electron density matrix are calculated, they can be used as initial
input conditions in subsequent real-time quantum dynamics calculations.
These RT-TDDFTB quantum dynamics calculations are carried out in prac-
tice by applying a time-dependent electric field to the initial ground state
(GS) density matrix, resulting in the Hamiltonian

Ĥ(t) = Ĥ0 − E0(t) ⋅ �̂�(t) [1]

where E0(t) is the applied electric field, and �̂� is the dipole moment operator.
Because the Hamiltonian in Eq. [1] is explicitly time dependent, the den-
sity matrix, �̂�, evolves according to the Liouville–von Neumann equation of
motion which, in the nonorthogonal-DFTB basis, is given by26

𝜕�̂�

𝜕t
= 1

iℏ
(S−1 ⋅ Ĥ[�̂�] ⋅ �̂� − �̂� ⋅ Ĥ[�̂�] ⋅ S−1) [2]

where Ĥ is the Hamiltonian matrix (which implicitly depends on the density
matrix), S−1 is the inverse of the overlap matrix, and ℏ is Planck’s constant.

Furthermore, because the quantum system is directly propagated in
the time domain, one can choose E0(t) to have any time-dependent form.
For example, if E0(t) is chosen to have the form of a Dirac delta function
given by

Edelta(t) = E0𝛿(t − t0) [3]

this “kick” perturbation instantaneously changes the velocity field of the
electrons and causes a time-varying dipole moment. As a result, the state
of the system is no longer an eigenfunction of the Hamiltonian. In practice,
Edelta is implemented as a linearly polarized Gaussian-type perturbation or
as a phase in the initial electron density27 given by:

Edelta(t) = E0 exp

[
−
(t − t0)2w2

2

]
n̂ [4]
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where n̂ is the polarization vector. The temporal evolution of the density
matrix is carried out iteratively where the atomic charge on atom 𝛼 is first
calculated using the Mulliken approximation:

q
𝛼
=
∑
𝜇∈𝛼

[𝜌(t)S]
𝜇𝜇

[5]

Afterward, the self-consistent charge Hamiltonian matrix is constructed as4

H
𝜇𝜈

= ⟨𝜙
𝜇
|Ĥ0|𝜙

𝜈
⟩ + 1

2
S
∑
𝜉

(𝛾
𝛼𝜉

+ 𝛾
𝛽𝜉
)Δq

𝜉
[6]

where 𝜙
𝜇

are DFTB Slater-type orbital basis functions centered on the
atomic sites, and 𝛾

𝛼𝜉
is a function of the interatomic separation and the

Hubbard parameter U.28 Finally, the density matrix is updated using a
three-point integration algorithm:

�̂�(t0 + Δt) = �̂�(t0 − Δt) − 2
i
ℏ

̇
�̂�Δt + O[(Δt)2] [7]

which is accurate to order (Δt)2.
However, if one chooses E0(t) to take the form of a sinusoidal perturba-

tion given by
Elaser = E0 sin(𝜔t) [8]

it represents a continuous interaction of the system with monochromatic
light of frequency 𝜔 (i.e., a laser) in the time domain, and this perturbation
is added to the Hamiltonian in the iterative procedure:

Ĥ(t) = Ĥ0 +
1
2
[SV̂(t) + V̂(t)S] [9]

where V̂(t) is set to −E0 sin(𝜔t) ⋅ �̂�(t) or the expression for the delta pertur-
bation (Eq. [4]). It is worth mentioning that both of these different choices
for the electric field give different but complementary viewpoints of quan-
tum dynamics, as will be explained in both the tutorial and example sections
that follow. To more easily understand this entire procedure, the follow-
ing pseudocode flowchart shows the sequential steps for carrying out an
RT-TDDFTB electron dynamics calculation.29

In summary, the RT-TDDFTB algorithm commences by reading the fol-
lowing files from a ground-state DFTB+ calculation: the non-self-consistent
Hamiltonian matrix (H0), the self-consistent Hamiltonian matrix (HSCC), the
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Algorithm 1 Pseudocode for RT-TDDFTB dynamics
Read H0, HSCC, 𝜌MO, and S from DFTB+ output files
Compute S−1

Solve equation: HSCCC = S C E
Calculate 𝜌0 = C𝜌MOC†

do i = 0 to N
t = iΔt
Compute q(t) (Eq. [5])
Compute H(t) (Eq. [6])
Add electric field to H(t)
Update 𝜌 (Eqs. [2] and [7])
Compute electronic properties of the system.

end do

single-electron density matrix in the molecular orbital representation (𝜌MO),
and the overlap matrix (S). Next, the inverse of the overlap matrix (S−1)
is computed, and HSCC is diagonalized. The diagonalization of this matrix
gives the one-electron reduced density matrix of the GS in the atomic orbital
(AO) basis.

Tutorial on RT-TDDFTB Electron Dynamics for a Naphthalene
Molecule

With the basic theoretical concepts of RT-TDDFTB outlined in the pre-
vious section, we now give two tutorials showing how to (i) compute an
absorption spectrum of a simple naphthalene molecule and (ii) probe the
time-dependent dynamics of naphthalene in the presence of monochromatic
light (i.e., a laser perturbation) using the RT-TDDFTB approach.

Absorption Spectrum for Naphthalene

As mentioned in the RT-TDDFTB theory and methodology section, a
ground-state DFTB+ calculation for naphthalene must be carried out first
before performing an RT-TDDFTB calculation. With the ground-state
DFTB+ calculation for naphthalene properly converged, one obtains the
non-self-consistent Hamiltonian matrix, the self-consistent Hamiltonian
matrix, the initial single-electron density matrix, and the overlap matrix as
output files. Next, to compute an absorption spectrum of naphthalene, three
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FIGURE 1 Time-dependent dipole moment for a naphthalene molecule obtained
by applying a Dirac delta electric field pulse to the system.

independent simulations must be carried out in which the system is excited
with a very short electric pulse (i.e., a Dirac delta pulse) that is applied
in three mutually orthogonal directions to compute the polarizability
tensor. Once the RT-TDDFTB electron dynamics calculation finishes, the
time-dependent dipole moment is obtained, as shown in Figure 1.

In the limit of very weak perturbations, the system is said to be in the
linear response regime, and the induced dipole moment of the system is
given by

𝜇(t) = ∫
∞

−∞
𝛼(t − 𝜏)E(𝜏)d𝜏 [10]

where 𝜏 is the time difference between the electric field and induced dipole
moment, E is the electric field used to induce a rearrangement of charges
inside the system, and 𝛼 is the polarizability tensor. The quantity most easily
accessible experimentally is the photo-absorption cross section given by:

𝜎(𝜔) = 4𝜋𝜔
c

Im(𝛼) [11]

where c is the speed of light, and Im(𝛼) is the imaginary part of the aver-
age polarizability. Im(𝛼) is obtained by the application of the convolution
theorem, and Eq. [10] can be expressed in the frequency domain as

𝜇(𝜔) = 𝛼(𝜔)E(𝜔) [12]
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To mimic the experimental absorption spectrum within this formalism,
a damping term is typically included in Eq. [12]. This effectively incorpo-
rates a finite lifetime of the excited state in the response function, which
produces a broadening in the absorption spectrum peaks.30, 31 The damping
factor used in this tutorial on naphthalene is 0.01 fs−1 (see Figure 2a). This
approach gives the polarizability along the direction of the initially applied
field, and the full polarizability tensor is obtained from three independent
time propagations where the only quantity that is altered is the direction of
the external electric field.32 The average of the polarizability along the three
Cartesian axes is taken as the absorption spectrum of naphthalene, as shown
in Figure 2b.

Electron Dynamics of Naphthalene with a Laser-Type Perturbation

With the absorption spectrum of naphthalene properly computed, one can
apply a laser-type perturbation tuned to the lowest excitation energy (i.e.,
5.63 eV) of the system. As in the case of the Dirac delta pulse, one can
also set the polarization of the laser field to any orientation with respect to
the molecule; however, for this example on naphthalene, we have oriented
the laser field in the direction of maximum polarizability to produce the
maximum variation of the dipole moment as a function of time, as shown in
Figure 3.

It can be noted from Figure 3 that the naphthalene molecule exhibits a
linearly increasing dipole moment, as expected from a quantized system in
the linear response regime that is continuously excited and in the absence
of any dissipative mechanisms.33 As such, this can be used to check that the
laser is in tune with the electronic excitation energy and that the simulation
is indeed in the linear response regime.

RT-TDDFTB Electron Dynamics of a Realistic Large Systems

In this final section on RT-TDDFTB dynamics, we give an example of the
techniques used in the previous tutorial section on a “real-life” application
to a large system. In particular, we focus on the real-time electron dynamics
of EET in a large plasmonic nanoantenna system using the RT-TDDFTB
formalism.22, 23 Understanding and achieving a controlled transfer of
energy in these novel systems has been a continual area of interest in
various technologies including nanophotonic circuits,34–37 waveguide
materials,38–40 and other natural light-harvesting antenna systems.41, 42
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FIGURE 2 (a) Damped time-dependent dipole moment for a naphthalene molecule, and (b) absorption spectrum for naphthalene
obtained from the Fourier transform of the damped time-dependent dipole moment.
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FIGURE 3 Time-dependent dipole moment for a naphthalene molecule obtained
by applying a laser field tuned to the lowest excitation energy (5.63 eV) of the system.

Absorption Spectrum of a Single Plasmonic Nanoparticle

We begin our analysis of EET by first characterizing the plasmon resonance
energy of a single nanoparticle (NP) containing 55 silver atoms and having
an icosahedral shape. The geometry of this NP was optimized with the
DFTB+ package using the hyb-0-2 set of DFTB parameters (available at
dftb.org), and its absorption spectrum was obtained in the same manner as
described in the tutorial section on naphthalene. As can be seen in Figure 4,
a prominent peak, corresponding to the plasmon resonance is observed
around 3.23 eV. This result is in good agreement with a time-dependent
DFT calculation of 3.6 eV43 and a recent experimental result of 3.8 eV44

for similar-sized Ag NPs.

Exploring Excitation Energy Transfer in Ag Nanoparticle Chains

With the energy of a single Ag NP characterized, we can now proceed
to an analysis of EET in plasmonic NP assemblies. Accordingly, we can
use the single Ag NP to construct a variety of NP antenna configurations,
each with interparticle distances (d) varying from 5 to 0.5 Å. We define
the interparticle distance as the edge-to-edge distance between the NPs,
and two of the model NP waveguides are shown in Figure 5. We can also
construct a NP chain where the NPs “touch” each other (d = 0 Å) in which

dftb.org
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FIGURE 4 Absorption spectrum of a 55 atom icosahedral silver nanoparticle. A
prominent plasmon resonance peak is observed around 3.23 eV. Source: From Ref.
23 with permission from The Royal Society of Chemistry.
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FIGURE 5 Pictorial representation of two finite chains with 8 Ag NPs of
radius ≈1.23 nm and interparticle (edge-to-edge) distances equal to (a) 1 Å and
(b) 5 Å. Source: From Ref. 23 with permission from The Royal Society of Chemistry.
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FIGURE 6 The field intensity values are taken at identical positions in each
nanoparticle chain as shown by the black dots. The points lie exactly between two
nanoparticles and on a line approximately 1 Å below the lowest atom in the NP.
Source: From Ref. 23 with permission from The Royal Society of Chemistry.

the center-to-center distance between two atoms from adjacent NPs is less
than the Ag–Ag bond-forming distance (the Ag–Ag atom bond length is
3.00 Å). It should be mentioned that each of these chains are extremely
large systems containing a total of 440 atoms and, therefore, would be com-
putationally prohibitive to calculate with conventional real-time TDDFT
approaches.

To simulate EET along the NP chains, we excite only the first Ag NP in
the chain using a monochromatic laser (using a similar approach discussed in
the tutorial section) with an energy equal to the plasmonic resonance energy
of a single Ag NP (3.23 eV). With this chosen initial condition, the entire
system is allowed to evolve in time according to Eq. [2]. To quantify the
EET efficiency along the chain, we can compute the electric field intensities,
I =

√
𝜖0∕𝜇0 × |E |2, at identical points between each of the NPs along the

axial direction shown in Figure 6. E is the total electric field, and 𝜖0 and 𝜇0
are the permittivity and permeability of free space, respectively.

Figure 7 shows the intensity trends of the NP chains with interparticle
distances ranging from 0 to 5 Å. From the intensity trends in Figure 7, we
observe a monotonic increase in the EET efficiency (i.e., the slope of the
intensity lines decreases) as the interparticle distance is reduced from 5 to
about 2 Å. This result is in qualitative agreement with previous studies on
similar systems using classical electrodynamic methods.45, 46 This increase
in EET efficiency can be attributed to an increase in capacitive coupling
between the Ag NPs as the interparticle distance between them is reduced. In
other words, this phenomenon is analogous to a charged capacitor,47 where
the capacitance of a capacitor increases as the charged plates are brought
closer together. However, as the interparticle distance is further reduced
below 2 Å, we observe an opposite trend of the EET efficiency. In particu-
lar, we see a sudden drop in EET efficiency for interparticle distances below
2 Å (i.e., the slope of the intensity line increases). This result is qualita-
tively opposite to what has been predicted by previous computational studies
that have observed a decrease in EET when the NPs directly touch each
other.45, 46
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FIGURE 7 Field intensities along silver NP chains with varying interparticle
distances. The first nanoparticle in each of the chains is excited at the plasmon
resonance energy, and the intensity values are computed at the interparticle gaps of
the NPs as shown in Figure 6. The excitation energy used in the simulation is equal
to the plasmon resonance energy of the single Ag nanoparticle. A drastic drop in
the field intensity is seen for Ag chains with interparticle spacings less than 2 Å.
Source: From Ref. 23 with permission from The Royal Society of Chemistry.

Analyzing the Electronic Couplings in NP Chains

To understand these interesting dynamical effects, we can use RT-TDDFTB
to analyze in detail the electronic couplings between the NPs in the plas-
monic chain. To this end, we plot the RT-TDDFTB absorption spectra of
Ag NP dimers with varying interparticle distances in Figure 8. On careful
observation of Figure 8, we note that a single prominent peak, close to the
value of the single NP plasmonic energy, can be observed for all interparti-
cle distances. However, for interparticle spacings less than 2 Å, an additional
peak (marked with arrows in Figure 8) forms in the absorption spectrum. The
prominent peak normally arises due to interactions (hybridizations) between
the basic plasmon resonances of the elementary nanostructures (in this case,
the single Ag NP). This excitation is the bonding (symmetric) mode, nor-
mally known as the bonding dipole plasmon, or BDP, and is characterized
by charge oscillations of the NPs in phase with each other.48 The other
peak appearing at lower energies and smaller interparticle distances is nor-
mally observed when an optical-frequency conductive pathway is estab-
lished between two NPs, enabling the transfer of charge between them. This
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FIGURE 8 Absorption spectrum for Ag NP dimers with varying interparticle
separations. An additional lower-energy peak (corresponding to a charge transfer
plasmon excitation) emerges in the absorption spectrum for dimers having an
interparticle spacing less than 2 Å, denoted by arrows. Source: From Ref. 23 with
permission from The Royal Society of Chemistry.

conductive pathway can be physical, due to a physical bridge or due to
quantum tunneling. This is known as a Charge Transfer Plasmon, or CTP.49

Unlike the BDP, the CTP is characterized by a total charge moving between
the two NPs of the dimer, which we observe as the lower-energy peak in
our absorption spectrum. In our case of non-touching NPs, the CTP exci-
tation can be attributed completely to quantum tunneling that establishes
a conductive pathway between the two NPs of the dimer. While charge
transfer plasmons have been previously observed theoretically in DFT and
quantum-corrected classical models,47, 49, 50 this is the first example of pre-
dicting CTPs using RT-TDDFTB calculations.

Investigating the Nature of Plasmonic Excitations

To understand these drastic drops in EET efficiency for smaller interparti-
cle spacings, we need an intuitive way to analyze these excitations. Figure 9
shows the charge distributions and the time-dependent changes in Mulliken
charges for the NP dimer with an interparticle spacing of 1 Å. In the pan-
els of this figure, we compare the time-dependent dynamics when the NP
dimer is excited at either the BDP or CTP energy peak. When the NP dimer
is excited at the CTP peak, one of the NPs shows a predominantly posi-
tive charge, while the other one shows a negative charge (Figure 9a). The
time-dependent changes in Mulliken charges confirm this observation in
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FIGURE 9 Snapshot of charge distributions at one instance in time for a Ag NP dimer with an interparticle distance equal to 1 Å
excited at (a) the CTP peak and (b) the BDP peak. The CTP peak distributions show a total charge separation between the two NPs,
while the BDP peak distributions show dipolar charge distributions within each of the NPs. The time-dependent changes in Mulliken
charges are shown for the (c) CTP and (d) BDP peak for the same Ag NP dimer. For both the CTP and the BDP excitations, a net charge
fluctuation is seen between the NPs, which indicates a hybridized nature of the BDP peak at subnanometer spacings. Source: From Ref.
23 with permission from The Royal Society of Chemistry.
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Figure 9c. This behavior is characteristic of a CTP excitation, where an
oscillating current occurs between the two NPs of the dimer. Also note in
Figure 9a that we observe a slight dipolar nature of charge distributions near
the particle edges. This can be attributed to the atomistic treatment of the
NPs, whereby the charge transfer plasmon induced on the NP dimers also
establishes a small opposing dipole on the inner edges of the same NPs due
to interatomic electrodynamic interactions.

However, when the NP is excited at the BDP peak, we observe some
charge transfer from one NP to the other, which is uncharacteristic of a BDP
excitation.22 In particular, we observe that at subnanometer interparticle
spacings, the pure BDP excitation forms a hybridized excitation that has
some CTP character. As such, the decrease in the EET efficiency in smaller
interparticle spacing chains can be attributed to the formation of this
hybridized BDP. Because the hybridized BDP allows for a small charge
transfer between the NPs, it reduces the capacitive coupling between the
NPs. Going back to the capacitor analogy used previously, this can be
thought of as a leaking capacitor. This, in turn, is ultimately responsible for
the reduction in capacitive coupling between the NPs and hence the drop in
EET efficiency, as revealed by these RT-TDDFTB calculations.

DFTB-BASED NONADIABATIC ELECTRON DYNAMICS

Adiabatic vs Nonadiabatic Dynamics

Until now, we have highlighted the use of RT-TDDFTB to probe the elec-
tron dynamics of large systems in external electric fields where the nuclei
are held fixed. However, in this section, we discuss and give examples where
this constraint is relaxed and the nuclei are allowed to evolve nonadiabat-
ically on different potential surfaces. We first give a general overview of
nonadiabatic dynamics and present a specific example of how DFTB can be
further extended to give mechanistic insight in these excited-state processes.

In conventional electronic structure methods (such as DFT or even
DFTB), one can solve the time-independent Schrödinger equation (TISE),
ĤΦ = 𝜖Φ, for a given set of nuclear coordinates (R). Specifically, the
electronic Hamiltonian is diagonalized to obtain a set of eigenvectors and
eigenvalues that depend on the nuclear coordinates and, therefore, are
known as the adiabatic eigenvectors and eigenvalues. When the TISE
is solved for several sets of nuclear coordinates, we obtain the adiabatic
potential energy surfaces (PESs).

In many chemical reactions, the wavefunction of the entire system can
be expressed as a single adiabatic PES (instead of a linear combination of
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FIGURE 10 In an adiabatic processes (a), the wavefunction of the entire system is
confined to a single PES, typically the ground-state (GS) surface. In a nonadiabatic
process (b), the electronic amplitudes of the wavefunction will evolve over many
PESs (i.e., the wavefunction is expressed as a linear combination of several adiabatic
states).

several adiabatic surfaces). Often, this adiabatic PES corresponds to the
ground-state of the species involved in the chemical reaction. For example,
when we draw a reaction path depicting the transformation of the reactants
(HCl + C2H5Br) into the products (HBr + C2H5Cl) through a transition
state (C2H5BrCl), we inherently assume that these reactions occur along
the ground-state PES (through a specific reaction coordinate). These
chemical processes, where the wavefunction is confined to a single PES,
are termed as adiabatic processes (see left panel of Figure 10a) and can
be accurately described by the TISE (i.e., when the nuclear dynamics are
governed by a single adiabatic PES, it is within the realm of the adiabatic
dynamics). Born-Oppenheimer molecular dynamics and Car–Parrinello
molecular dynamics are examples of such ab initio adiabatic dynamics, and
many electronic structure packages such as CP2K,51 Quantum Espresso,52

VASP,53 SIESTA,54 NWChem,55 and DFTB+24 are routinely used by many
researchers to calculate on-the-fly adiabatic dynamics.

In contrast to adiabatic dynamics, in most photochemical processes,
the wavefunction of the entire system spans several PESs. A well-known
example of this is fluorescence (i.e., the decay of a system from an excited
(Ex) to the GS by emitting radiation), and the wavefunction of the entire
system cannot be solely described as either the ground or excited state, but
can only be expressed as a superposition of these states. These processes,
where the electronic amplitudes of the wavefunction evolve over many
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PESs, are known as nonadiabatic processes (Figure 10b). Furthermore, the
nuclear motion that is described by several adiabatic PESs is known as
nonadiabatic molecular dynamics (NAMD). Compared to adiabatic dynam-
ics, only a few software packages such as Q-Chem56 and Octopus32 have
implemented direct on-the-fly NAMD (i.e., the entire NAMD simulation
can be performed within the same package). Although direct on-the-fly
implementations are scarce, many software packages such as PYXAID,57

NEWTON-X,58 SHARC,59 QMFlows,60 and LIBRA61 have implemented
various NAMD methods. Also, most of these packages have an interface
with traditional electronic structure packages such as Quantum Espresso
and others, enabling us to perform NAMD calculations on both molecular
and periodic systems. In this chapter, we present a tutorial and example of
the fewest switches (FS) surface hopping (SH) method (a NAMD method),
which we implemented in the DFTB+ software package.

To accurately capture nonadiabatic effects, a full quantum mechan-
ical treatment of both the electronic and nuclear degrees of freedom is
necessary. However, such a treatment is computationally prohibitive even
for systems with moderate sizes (∼50-100 atoms). To circumvent this
computational burden, only the electrons are treated quantum mechanically,
and the nuclear motion is described classically. Among these so-called
“mixed quantum-classical” (MQC) approaches, the Fewest-Switches
Surface-Hopping (FSSH) method is one of the most popular methods, and
in this chapter, we use it to study the nonadiabatic electron dynamics in
organic systems.

Equations Governing Nonadiabatic Electron Dynamics

In any MQC method, the electron dynamics is captured by a time-dependent
total wavefunction, Ψ(r, t), which satisfies the time-dependent electronic
Schrödinger equation (TDSE):

iℏ
𝜕

𝜕t
|Ψ(r, t)⟩ = Ĥel(r,R(t))|Ψ(r, t)⟩ [13]

Here, Ĥel(r,R(t)) is the electronic Hamiltonian operator for a set of
nuclear coordinates, R, at time t. Using an electronic structure method
such as DFT, the electronic Hamiltonian can be solved to obtain the adi-
abatic eigenvectors Φi(r,R(t))⟩ and eigenvalues 𝜖i(R(t)). These adiabatic
eigenvectors can correspond to molecular orbitals, Slater determinants,
etc., depending on the employed electronic structure method. Accordingly,
the corresponding eigenvalues can represent the molecular orbital energies,
ground or excited-state energies, etc.
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By assuming that these adiabatic eigenvectors form a complete orthonor-
mal basis, we can express the total wavefunction as their linear combination,
i.e., |Ψ(r, t)⟩ = ∑

i

ai(t)|Φi(r,R(t))⟩ [14]

Inserting the above ansatz (Eq. [14]) into the TDSE (Eq. [13]), and multi-
plying the resulting expression with ⟨Φj(r, R(t))| from the left gives us the
following differential equation:

ȧj(t) = − i
ℏ

aj(t)𝜖j(R(t)) −
∑

i

ai(t)⟨Φj(t)| 𝜕
𝜕t
Φi(t)⟩ [15]

In this expression, we have used the shorthand notation |Φi(t)⟩ ≡|Φi(r, R(t))⟩, and the nonadiabatic coupling elements, Cji ≡ ⟨Φj(t)| 𝜕
𝜕t
Φi(t)⟩

are related to the derivative coupling vectors, dji, through

Cji = ̇R⟨Φj(r ,R(t))|∇R|Φi(r ,R(t))⟩ ≡ ̇Rdji [16]

It is important to note that the coupling elements, Cji, are responsible for
the nonadiabatic electronic transitions between any two adiabatic states j
and i. Integrating Eq. [15] gives us the wavefunction coefficients, aj(t), at
each time step, allowing us to completely specify the total wavefunction,|Ψ(r, t)⟩ (we already know the adiabatic eigenfunctions at each nuclear step
by solving the TISE). As a reminder, the set of {|Φp(r, R(t))⟩} is known as an
adiabatic basis set because it explicitly depends on the nuclear positions, R.

The Classical Path Approximation

As mentioned earlier, in MQC methods, the nuclei are propagated according
to classical mechanics, and the forces acting on the nuclei at each nuclear
time step can be obtained using the Hellmann–Feynman theorem:

FI = −⟨Ψ(r, t)|∇IĤel(r ,R(t))|Ψ(r, t)⟩ [17]

Thus, the changes in the total wavefunction with time will have a direct
influence on the nuclear motion. Often, to decrease computational costs,
the electronic “back reaction” on the nuclear motion is neglected, and this
approximation is known as the classical path approximation (CPA). As
such, within the CPA, the nuclear motion is not affected by the electron
dynamics. Nonetheless, the electron dynamics still depends on the nuclear
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coordinates (due to the parametric dependence of the adiabatic eigenvectors
on the nuclear coordinates at each time step), and the CPA is generally valid
when the ground and excited-state PESs differ slightly.

Surface Hopping and Fewest Switches Criterion

SH is a general MQC nonadiabatic dynamics methodology with many vari-
ants, such as FSSH,62, 63 Decoherence Induced Surface Hopping (DISH),64

Independent Electron Surface Hopping (IESH),65 and others.66 The similar-
ities in most of these variants include the following:

1. The nuclei are propagated according to classical mechanics, and the
forces on the nuclei, at any given instant of time, arise from a single
adiabatic PES.

2. The nonadiabatic electron dynamics are captured by evolving the
wavefunction using a stochastic algorithm for each trajectory and by
averaging the results over a swarm of trajectories.

For each SH trajectory, we start our simulation from a single adiabatic
PES (known as the active state). Next, we compute the probabilities for an
electron to hop from this active state to all the other states (i.e., the adiabatic
PESs). These computed probabilities are then compared with a uniformly
generated random number. If the probability to jump from the active state
to any other state is greater than the generated random number, the hop is
accepted; otherwise, it will be rejected. This process is repeated for a swarm
of trajectories, and the results are averaged over them to obtain the electron
dynamics (as further explained in the next section).

Among the variants of SH approaches, the FSSH method is the most
successful.57, 66, 69 In this method, the number of hops (switches) between
the states is minimized, as described in the following example. Let us assume
that our system has only two states or PESs (namely, ground and excited
states), and we are running 10 SH trajectories. Let us also consider that at
a particular instant of time (say, t = 0), 5 of these 10 trajectories are in the
excited state, while the other 5 are in the GS; i.e., [NGS,NEx] = [5,5] (see
Figure 11a). Finally, let us assume that in the next time step (t = 1), there are
six trajectories in the GS (NGS = 6), and four in the excited state (NEx = 4).
We can obtain this configuration, [NGS,NEx] = [6,4], in several ways includ-
ing: (i) switching three trajectories from the excited state to the GS, and
only two trajectories from the ground to the excited state (Figure 11c) or (ii)
allowing two trajectories to hop from the excited state to the GS, and only
one trajectory to hop from the ground to the excited state, and so on. There
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will always be a way to achieve the desired configuration with the least num-
ber of switches/hops between the PESs. To achieve the desired configuration
with minimum switches in the present example, only one trajectory in the
excited state should switch to the GS, and zero trajectories should switch
from the GS to the excited state (Figure 11b). This criterion is known as
the FS criterion, and using this constraint, Tully proposed the FSSH mech-
anism to capture nonadiabatic electron dynamics phenomena. We use the
CPA version of FSSH in conjunction with DFTB (as the underlying elec-
tronic structure method), as explained below.

Implementation Details of CPA-FSSH-DFTB

To understand charge transfer dynamics in large organic photovoltaic
systems, we use the CPA-FSSH method in the DFTB+ software package
(version 17.1). In particular, we use the DFTB3 variant70 as our electronic
structure method to obtain the adiabatic eigenvectors and eigenvalues
at each nuclear time step. For this implementation, we assume that
the photoinduced excited-state dynamics can be well described with a
single-electron wavefunction. Hence, we adapt the single particle version of
the time-dependent Kohn-Sham (TDKS) approximation,71 which assumes
the time-dependent excited-state wavefunction |Ψ(r, t)⟩ can be represented
as a linear combination of the GS KS orbitals |Φi(r,R(t))⟩, as given in
Eq. [14]. This definition of |Ψ(r, t)⟩ has been shown to provide reasonable
photoinduced charge transfer dynamics.72–76 Using the above definition,
Eq. [15] can be numerically integrated using the fourth-order Runge–Kutta
(RK4) method to obtain the expansion coefficients, ai(t), at each time step.
During the integration, to compute the nonadiabatic coupling elements
(Eq. [16]), we use the following well-established approximation62⟨

Φj(t)| 𝜕
𝜕t
Φi(t)

⟩
= 1

2𝜏
[⟨Φj(t)|Φi(t + 𝜏)⟩ − ⟨Φj(t + 𝜏)|Φi(t)⟩] [18]

This quantity needs to be carefully calculated by following the random
phases generated during the electronic structure calculations to obtain the
adiabatic eigenvectors, |Φi(r, R(t))⟩.77–79 In DFTB+, these eigenvectors
(MOs) are expanded as a linear combination of the AOs; i.e.,

|Φi(r ,R(t))⟩ = ∑
𝜇

C
𝜇i(r ,R(t))|𝜑

𝜇
(r,R(t))⟩ [19]

and in Eq. [18], the overlap between the adiabatic basis at two different time
steps is computed as

Φj(r ,R(t + 𝜏))|Φi(r ,R(t)) =
∑
𝜇𝜈

C
𝜇j(r ,R(t + 𝜏))C

𝜈i(r ,R(t))S
𝜇𝜈
(t + 𝜏, t)

[20]
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Here, S
𝜇𝜈
(t + 𝜏, t) is the overlap between two AOs at two different time steps

S
𝜇𝜈
(t + 𝜏, t) = 𝜑

𝜇
(r,R(t + 𝜏))|𝜑

𝜈
(r,R(t)). [21]

These AO overlap integrals are explicitly evaluated with our in-house ver-
sion of the DFTB+ code.

After obtaining the eigenvectors, eigenvalues, wavefunction expansion
coefficients, and the coupling elements at each time step, the SH simula-
tion is carried out using the CPA-FSSH scheme proposed by Akimov and
Prezhdo,57 which is an adaptation of the original FSSH scheme proposed
by Tully and Hammes-Schiffer (with some modifications).62 In CPA-FSSH,
an instantaneous active state is assigned and the probability of switching
from the current state, |Φi(r, R(t))⟩, to any other state, |Φj(r, R(t))⟩, during
a small time interval, t ∈ [t, t + 𝛿] is calculated as

g̃ij(t) = −
2Re

[
𝜌ij(t)⟨Φj(t)| 𝜕

𝜕t
Φi(t)⟩]

𝜌ii(t)
𝛿t [22]

where 𝜌ij(t) = a∗i (t)aj(t) are the adiabatic electronic density matrix ele-
ments. Because of the CPA, one can ignore the back reaction of the
electronic-nonadiabatic transition on the nuclear degrees of freedom.
Hence, we do not rescale the velocity, which is one of the key ingredients
in the original FSSH algorithm. Instead, following earlier work,57, 80 the
transition probabilities are rescaled to preserve the energy conservation
with the following expression:

gij(t) = max[g̃ij(t) ∗ bij(t), 0] [23]

with bij(t) = e−(𝜖j−𝜖i)∕kBT for 𝜖j > 𝜖i, and bij(t) = 1 for 𝜖j ≤ 𝜖i, where kB is
Boltzmann’s constant, and T is the temperature of the system, which is
assumed to be constant during the nonadiabatic dynamics. Eq. [23] con-
siders only the positive probability flux. Finally, a switch from the state|Φi(r, R(t))⟩ to any other state, |Φj(r, R(t))⟩, is accepted only when

k=j−1∑
k=1

gik < 𝜉 ≤
k=j∑
k=1

gik [24]

where 𝜉 is a uniform random number between 0 and 1.
An ensemble of CPA-FSSH trajectories are generated by propagating the

nuclei using Eq. [17], by computing the electronic amplitudes using Eq. [15],
and by determining the active state using Eq. [24].
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Post-processing Tools

With the generated ensemble of CPA-FSSH trajectories, we compute the
adiabatic reduced density matrix as

𝜌ij(t) = ⟨𝜌ij(t)⟩ [25]

where ⟨...⟩ represents the ensemble average. The estimator, 𝜌ij(t), is
expressed as

𝜌ii(t) = ⟨Φi(r ,R(t))|Φ
𝛼
(r ,R(t))⟩ = 𝛿i𝛼 [26]

𝜌ij(t) = a∗i (t)aj(t) (for i ≠ j)

Here, the diagonal elements of �̂� (i.e., 𝜌ii(t)) are chosen based on the active
state |Φ

𝛼
(r, R(t))⟩. Along a specific trajectory, R(t), the instantaneous pop-

ulation at time t is considered as 1 for the active state |Φ
𝛼
(r, R(t))⟩, and 0

for all other states. The off-diagonal elements are computed based on the
wavefunction expansion coefficients, aj(t).

Apart from the adiabatic populations mentioned above, we also need the
time-dependent diabatic/charge populations on each moiety of the entire
system to characterize the photo-induced charge transfer dynamics. The
charge population on a specific fragment is obtained by projecting the
adiabatic reduced density matrix onto the AO basis associated with that
molecular fragment, N, as:

PN(t) = Re

[
𝜈∑

𝜇∈N

∑
ij

𝜌ij(t)C𝜇i(t)S𝜇𝜈(t)C𝜈j(t))

]
[27]

where S
𝜇𝜈
(t) = 𝜑

𝜇
(r,R(t))|𝜑

𝜈
(r,R(t)) is the AO overlap matrix at time t.

The expectation value of the charge population is thus

PN(t) = ⟨PN(t)⟩ [28]

where ⟨...⟩ represents the ensemble average over the CPA-FSSH trajectories.

COMPUTATIONAL DETAILS

To describe nonadiabatic electron dynamics in large organic systems, we
use the MQC CPA-FSSH method in conjunction with DFTB, which has
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been shown to give accurate electronic structures for model organic photo-
voltaic systems.81, 82, 90 The electronic structure calculations are performed
at the DFTB3 level of theory70 with the 3ob-3-1 Slater–Koster parame-
ter set83 as implemented in the DFTB+ package.24 Dispersion interactions
between the atoms are incorporated using the Lennard-Jones potential with
UFF parameters.84

The initialized wavefunction, |Ψ(r, 0)⟩, is the LUMO of the donor moi-
ety, |ΦD

LUMO⟩, which is a widely used approximation for simulating pho-
toinduced charge transfer dynamics.72, 73 Here, the LUMO of the donor
moiety is obtained from a separate DFTB calculation performed for the
isolated donor. From the set of eigenvectors (MOs) of the entire system
at the zeroth time step, {|Φi(r;R(0))⟩}, an MO maximizing the overlap⟨ΦD

LUMO|Φi(r;R)⟩ is selected.
As explained above, the wavefunction |Ψ(r, 0)⟩ at the initial time step

is represented as one of the MOs of the entire system. This choice pro-
vides a reasonable single-electron picture of the localized photo-excitation
in the system. At all other time steps, to reduce computational cost, the
size of the MO basis is truncated to a smaller set containing the LUMO
to LUMO+9 orbitals, which are low-lying orbitals that participate directly
in the photo-induced charge transfer process.

Several nuclear configurations are then generated with the following pro-
cedure. First, the system is equilibrated in an NVT (constant number of
particles, volume, and temperature) ensemble for 50 ps with a 1 fs nuclear
time step using the Nosé–Hoover chain thermostat as implemented in the
DFTB+ package. From this NVT trajectory, 30 different nuclear conditions
(coordinates and velocities at every 1 ps interval) are collected for the subse-
quent 4 ps-long quantum dynamics propagation. For each of these 30 nuclear
trajectories, 104 FSSH trajectories should be carried out to achieve conver-
gence. To compute the charge transfer population, an ensemble average over
both the FSSH and nuclear trajectories is considered.

AN EXAMPLE ON CHARGE TRANSFER DYNAMICS IN
ORGANIC PHOTOVOLTAICS

Above, we provided an overview of our implementation of MQC CPA-FSSH
DFTB for treating CT dynamics. Here, we illustrate the CT dynamics of
Phenyl-C61-butyric acid methyl ester/polythiophene (PCBM-PT), which is
a model system for understanding photo-induced charge transfer dynamics
in organic photovoltaics.85–88
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FIGURE 12 Variations in the energies of the LUMO to LUMO+5 orbitals (adi-
abatic states) of Phenyl-C61-butyric acid methyl ester/Polythiophene (PCBM-PT)
system are shown for a specific nuclear trajectory. Changes in the energy of the
active state for a specific FSSH trajectory are also shown. For this FSSH trajectory,
the active state switches between the LUMO+3 and LUMO+4 during the first 300 fs
of the simulation. Later, it switches to the LUMO+2, the LUMO+1, and finally to
the LUMO. It should be mentioned that 10 000 FSSH trajectories are calculated for
each nuclear trajectory.

0 fs 196 fs 500 fs

FIGURE 13 Charge density of the active state in Figure 12 at various time steps.
Carbon and hydrogen (oxygen and sulfur) atoms are represented by gray and white
sticks (balls), respectively. The charge density is shown as a black mesh. An iso-value
of 0.001 e/(Bohr)3 is used.

The simulation begins by initializing the entire system’s wavefunc-
tion, |Ψ(r, 0)⟩, by populating the LUMO of the PT molecule, |ΦPT

LUMO⟩,
and allowing it to evolve for a few picoseconds according to the
CPA-FSSH-DFTB methodology. In Figure 12 the time-dependent MO
energies of the LUMO to LUMO+5 are displayed for a single CPA-FSSH
nuclear trajectory during the first 500 fs. Variations in the active state as a
function of time for a single FSSH trajectory are also provided in the same
panel. At 0 fs, the active state corresponds to the LUMO+3 orbital of the
entire system; i.e., |Ψ(r, 0)⟩ ≡ |ΦPCBM-PT

LUMO+3 ⟩, which is primarily localized on
the PT molecule (|ΦPCBM-PT

LUMO+3 ⟩ ∼ |ΦPT
LUMO⟩) as shown at the left of Figure 13.
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FIGURE 14 (a) Adiabatic MO and (b) charge population of the PCBM-PT system
for a single nuclear trajectory. The same nuclear trajectory as in Figure 12 is used, but
the results are averaged over 10 000 FSSH trajectories. MO colors in (a) are the same
as in Figure 12. Due to the nonadiabatic transitions, the MO populations change with
time. For this nuclear trajectory, an oscillation in the MO population between the
LUMO+3 (localized on PT) and LUMO+4 orbitals (localized on PCBM) is observed
during the first 100 fs. The same oscillation is also reflected in the charge population
plot (panel b), where the gray and black curves represent the charge populations of
the PT and PCBM molecules, respectively.

In contrast, the LUMO+2 and LUMO+4 orbitals are localized on the
PCBM molecule. As the simulation proceeds, the LUMO+3 continues to
be the active state until ∼50 fs. At this stage, the active state hops from the
LUMO+3 to the LUMO+4, but quickly returns to the LUMO+3. At the
avoided crossings of the LUMO+3 and LUMO+4 (∼50 or 190 fs), we find
that both of these orbitals have a mixed character, as shown at the center of
Figure 13. Hops between the LUMO+3 and LUMO+4 are also observed
until 300 fs. Thereafter, the active state switches to the low-lying LUMOs
(which have a strong PCBM character) and retains its acceptor character
until the end of the simulation (as shown at the right of Figure 13). The
hops between the LUMOs correspond to the nonadiabatic transitions.

In Figure 14a and b, we present the adiabatic MO and charge popu-
lations calculated for the same nuclear trajectory in Figure 12, but aver-
aged over 10 000 FSSH trajectories. Due to the nonadiabatic transitions,
the MO populations change with time. Also, due to the stochastic nature
of the method, these changes are not smooth if we consider only a sin-
gle CPA-FSSH nuclear trajectory. For example, as shown in Figure 14a,
at 0 fs, the MO population is entirely on LUMO+3. However, as shown in
Figure 12, until ∼300 fs, an active state can continuously hop between the
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FIGURE 15 (a) Adiabatic MO and (b) charge population of the PCBM-PT system,
averaged over several nuclear and FSSH trajectories. The colors in panel (a) are the
same as those used in Figure 12. The LUMO+3 orbital (localized on PT) loses its
population to the LUMO and LUMO+1 orbitals (localized on PCBM), suggesting a
charge transfer from the donor to the acceptor. The gray and black curves in panel
(b) denote the populations of the PT and PCBM molecules, respectively.

LUMO+3 (localized on PT) and LUMO+4 orbitals (localized on PCBM)
due to the presence of several avoided crossings between these MOs for
this nuclear trajectory. Due to these continuous hops, the MO population
oscillates, and the same oscillation is also reflected in the charge population
(Figure 14b). It should be mentioned that although the same nuclear trajec-
tory is used in obtaining both Figures 12 and 14a, a one-to-one comparison
cannot be made between them. This situation arises because the results in
Figure 14a are averaged over 10 000 FSSH trajectories, whereas the results
in Figure 12 are presented for a single FSSH trajectory. Since the MO energy
fluctuations are the same for all 10 000 FSSH trajectories, understanding the
nature of a single FSSH trajectory could be useful in understanding the aver-
aged behavior of 10 000 FSSH trajectories. Finally, it is important to note
that one cannot accurately assign the charge transfer time scales using the
oscillating charge populations; to obtain any meaningful results, one needs
to run at least a few tens of nuclear trajectories.

The MO and charge populations obtained after averaging over 30 nuclear
trajectories and 10 000 FSSH trajectories for each nuclear trajectory are
depicted in Figure 15. In Figure 15a, the decaying MO population corre-
sponds to the PT-donor molecular orbital (the LUMO+3) while the increas-
ing MO populations correspond to the PCBM-acceptor orbitals (the LUMO
and LUMO+1). Due to the presence of more than one acceptor orbital, the
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increasing MO populations continued to exhibit minor oscillations. How-
ever, as both of these MOs correspond to the PCBM moiety, such oscillations
are not present in the charge populations (recall that the charge populations
are obtained by projecting the adiabatic MO populations onto the diabatic
AO basis). From the charge populations, we find a complete charge transfer
within ∼2 ps, but most of the population has been transferred by the first
picosecond of the simulation. These simulated charge transfer time scales
are in good agreement with earlier ab initio theoretical calculations on sim-
ilar PCBM-PT models.85–88

CONCLUSION AND OUTLOOK

In this chapter, we have presented an overview of DFTB-based excited-state
dynamics with applications to both real-time time-dependent DFTB
(RT-TDDFTB) and nonadiabatic dynamics. In both of these formalisms, a
series of didactic tutorials and examples demonstrate how each approach is
used in practice to reveal dynamical effects in chemical/material systems
of contemporary interest. Within the sections on RT-TDDFTB, we demon-
strated how this computational approach can be used to either calculate
an electronic absorption spectrum or probe the electron dynamics of a
chemical system in the presence of monochromatic light. Both of these
choices give a different but complementary view of electron dynamics in
large systems, as demonstrated by our example on plasmonic NPs. Within
the sections on nonadiabatic dynamics, we explained our implementation
of CPA-FSSH-DFTB, which was applied to study charge transfer dynamics
in an organic photovoltaic system. By computing the charge transfer
time scales in a model PCBM-PT system, which are in good agreement
with earlier ab initio results, this approach shows immense promise for
probing charge-transfer dynamics in even larger mesoscopic systems. Both
of these examples in RT-TDDFTB and nonadiabatic dynamics extend
the computational efficiency of DFTB to emerging areas of excited-state
chemical dynamics (some of which have already been implemented in
new computational hardware89), creating an exciting opportunity for
understanding these dynamical effects in large, complex systems.
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INTRODUCTION

Vapor leaves a boiling liquid, and oil floats above the aqueous fraction in
a demixing vinaigrette. Such gas–liquid (or liquid–liquid) phase separa-
tions are ubiquitous. They occur in systems whatever their constituents may
be—atoms, small molecules, proteins, polymer chains, colloids, etc.—as
long as these components effectively interact through attractive forces suf-
ficiently strong to compete with thermal noise. As attraction weakens com-
pared to this noise, a critical temperature, Tc, is eventually reached, at which
point the two (bulk) phases become indistinguishable and thus form a single
homogeneous fluid (Figure 1a).

When attraction between components is frustrated by a longer-ranged
repulsion, bulk low-temperature phases are replaced by mesoscale domains
organized in various periodic morphologies, such as lamellae and cylin-
ders (Figure 1b).1–3 Because these microphases also form irrespective of
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FIGURE 1 Schematic temperature T , density 𝜌, frustration 𝜉 phase diagram for model microphase formers. (a) At low frustration
𝜉 < 𝜉L, coexisting gas and liquid phases at low-temperature transform continuously into a homogeneous fluid at the critical point Tc. (b)
For frustration beyond the Lifshitz point, 𝜉 > 𝜉L, Tc becomes a weakly first-order (or weaker) transition at TODT. The low-temperature
gas–liquid coexistence is then replaced by a series of periodic microphases, such as clusters, cylinders, gyroids, and lamellae. Disordered
microphases, such as cluster and percolated fluids, are observed at higher temperature. Source: Adapted from Ref. [1]).
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the physical origin of the effective interactions, analogous patterns can be
observed in systems as diverse as diblock copolymers,4 aggregated colloidal
particles,5 oil droplets,6 magnetic materials,7, 8 as well as spin9 and charge
density waves.10

The transition from phase to microphase separation upon increas-
ing frustration, 𝜉, coincides with the gas–liquid critical point (at Tc)
transforming into a weakly first-order (or weaker) order–disorder transition
(at TODT) at the Lifshitz point, 𝜉L.11 At fixed 𝜉, above TODT, mesoscopic
domains can be observed but remain disordered. On the 𝜉-T plane, the point
(𝜉L,TL) thus separates three regimes12, 13: a high-temperature disordered
phase, gas–liquid coexistence at low temperatures for 𝜉 < 𝜉L, and periodic
microphases for 𝜉 > 𝜉L (Figure 1). The frustration, so-called because
particles are “frustrated” to choose between several competing states due
to its existence, can be of energetic, entropic, and even topological origin,
depending on the details of the system. We will see concrete examples in
following sections.

Beyond the theoretical and aesthetic fascination with periodic
microphases, these structures have also found myriad applications in
drug delivery,14, 15 patterning 16–20 and lithography.21, 22 In diblock copoly-
mers, for instance, the well-controlled nano-size porous structures can be
used to design nanofiltration membranes for water purification.23 Ordered
surfactant micelles can serve as templates for synthesizing mesoporous inor-
ganic molecular sieves.24 Compared with traditional top-down techniques
of nanopatterning, the bottom-up self-assembly of microphases enables
production of complex three-dimensional patterns with subnanometer preci-
sion, often using much simpler equipment. However, the emergence of unde-
sired competing structures often interferes with the formation of targeted
ones. External forces such as mechanical shearing,25–27 electric,28 and mag-
netic fields29 have thus been used to enhance and direct periodic microphase
assembly. A thorough understanding of the link between particle-level
interactions and the complex phase behavior of microphase formers is
crucial for designing and controlling these next-generation materials.

In the rest of the introduction, we detail different experimental
microphase formers and provide a minimal theoretical framework to present
the simulation challenges associated with studying model microphase
formers.

Block Copolymers

Block copolymers are by far the most studied microphase formers. Simple
diblock copolymers exhibit the whole spectrum of elementary periodic
mesoscopic patterns,4, 30 and more complex block structures can give
rise to structures of seemingly unbounded richness.31–33 The competing
interactions that give rise to microphase formation in these systems are
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effective. In a diblock copolymer, for instance, the monomers of the differ-
ent blocks, A and B, demix at low temperatures, which forms the basis of the
short-range attraction. The tendency to segregate is traditionally quantified
by the Flory–Huggins parameter 𝜒AB = z

kBT
[𝜖AB − 1

2
(𝜖AA + 𝜖BB)], where z

is the number of nearest neighbors around a monomer, kB is the Boltzmann
constant, and 𝜖ij < 0 (i, j ∈ {A,B}) is the interaction energy between a
pair of monomers. Together with the degree of polymerization N, 𝜒ABN
plays the role of an inverse temperature. Chain connectivity, however,
prevents blocks from segregating completely, thus giving rise to long-range
frustration. Different mesoscale morphologies then appear as the number
fraction fA (or fB) of component A (or B) is changed (Figure 2).

Block copolymers are also of particular theoretical interest because the
(mean-field) self-consistent field theory of Leibler for fA vs 𝜒ABN was
solved,35 just as the first mean-field description of a frustrated lattice model
was obtained.36

Surfactants and Microemulsions

Surfactants and other small amphiphilic molecules present a hydrophilic
head and a hydrophobic tail (containing one or multiple chains). Depend-
ing on the relative sizes of the head and tail, the overall effective shape of a
surfactant molecule may be cone-like, truncated cone-like, or cylinder-like
(Figure 3a–c). Head–head and tail–tail interactions drive segregation, but as
for block copolymers, frustration arises from the covalent bonding between
the head and the tail.2, 39

Small amounts of surfactants can be dissolved in water, thus forming a
homogeneous aqueous solution, but once the critical micelle concentration
(cmc) is reached supramolecular aggregates assemble instead.40 To mini-
mize the contact between the hydrophobic tail and water, surfactants form
spherical (or cylindrical) micelles, bicontinuous cubic structures, vesicles,
sponge-like phases, planar bilayers, and their inverted counterparts41

(Figure 3). Note that ordered mesophases formed in amphiphilic-water
systems are also known as lyotropic liquid crystals.42

In ternary oil–water–surfactant mixtures, surfactants tend to form mono-
layers at oil–water interfaces. Micelles swell as they fill with oil, thus form-
ing a thermodynamically stable microemulsion of small surfactant-coated oil
droplets in water (or water droplets in oil in oil-rich systems). At higher sur-
factant concentrations, other geometries can assemble, such as alternating
layers of oil and water, as well as bicontinuous phases with interpenetrating
oil and water domains.41

Synthetic amphiphiles find notable applications as detergents and
lubricants and are also used for drug (and vaccine43) delivery and oil
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FIGURE 2 (a) Stacking of diblock copolymer chains of two immiscible components A (ebook: red, print book: light gray) and B
(ebook: blue, print book: dark gray) in mesoscopic domains. TEM images of (b) lamellae and (c) hexagonally packed cylinders formed
by P3HS-b-PDMS block copolymers. Source: From Azuma et al. 201834 / with permission of American Chemical Society.
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recovery.44–46 Lipids, which are natural amphiphiles, are the foundation of
biological membranes. Self-assembled lipid vesicles are indeed primitive
models for living cells and principles about surfactant microphases can be
used to rationalize the structure of biological membranes37, 47 (Figure 3d).
Synthetic mesophases are even used as intermediates to bring membrane
proteins to crystallize.38 The organization of real cell membranes is,
however, much more complex and may contain hundreds of different
lipid species mixed with proteins, cholesterols, and other molecules.48

Besides three-dimensional microphases, such as gyroid structures in
trans-Golgi network,49 lipids are also thought to develop mesoscopic
domains on the quasi-two-dimensional surface of cell membrane.50, 51

These proposed “lipid rafts”, which are concentrated in cholesterols and
glycosphingolipids, are believed to strongly influence membrane fluidity
and protein trafficking.52–55

Lattice Spin Systems

Sinusoidal magnetic order with stacking of ferromagnetic layers was
first observed in rare-earth elements, such as erbium (Er),56 and in their
compounds, such as cerium antimonide (CeSb).57 Because atoms rest on
regular crystalline lattices in such systems, their magnetic microphases
can be explained by the competing ferromagnetic and antiferromagnetic
interactions between spins (Figure 4a,b), which result from the orbital and
spin angular momenta of unpaired electrons.60 Some high-temperature
superconductors also display exotic stripe electronic phases,61, 62 which
are spin-like,63, 64 as the result of the competition between the zero-point
kinetic energy of doped holes, which tends to delocalize charges, and the
antiferromagnetic interactions among magnetic moments and the Coulomb
interactions among charges, which favor their localization65 (Figure 4c).
More generally, a wide variety of nanoscale charge and spin density waves
can develop in transition metal oxides with strongly correlated electronic
interactions.8, 66

Colloidal Suspensions

Due to the ease of visualizing micron-scale particles, colloidal suspensions
are commonly used as model liquids, crystals, and glasses.67, 68 Various
attempts have also been made to prepare colloidal microphases. The stan-
dard paradigm for synthesizing competing attractive and repulsive effec-
tive interactions in colloids combines two separate physical processes. First,
the contribution from dispersion forces, which sums up to a strong effective
colloidal van der Waals attraction—scaling as ∼ 1∕h at short interparticle
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FIGURE 4 (a) A simple cubic lattice model in which a central spin (ebook: red, print book: gray) interacts ferromagnetically with its
six nearest neighbors but antiferromagnetically with two next-nearest neighbors along one axial direction. TEM image of (b) lamellar
superlattice in Ag-Mg alloy. Source: From Fujino et al. 198758 / with permission of American Physical Society, and (c) checkerboard
charge-order state in Na-doped cuprates. Source: From Hanaguri et al. 200459 / with permission of Springer Nature.
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FIGURE 5 (a) Effective Yukawa uY (dotted), depletion uAO (dashed) and overall
competing uSALR (solid) interactions between a pair of charged colloidal particles
of diameter 𝜎 (gray), immersed in a suspension of polymers (small circles) of
radius of gyration RG = 0.15𝜎. (b) Confocal microscopy image of clusters formed
in a colloid–polymer mixture at colloid volume fraction 𝜙 = 0.086. Source: From
Stradner et al. 20045 / with permission of Springer Nature.

surface separations h—and leads to irreversible flocculation of colloidal
particles,69 must be negated. A common approach is to solvate electrolytes
along with charged colloids to obtain a diffuse electric double-layer.70, 71

This scheme gives rise to an exponentially decaying repulsion ∼ e−𝜅Dh at
small h, where 𝜅D is the inverse Debye screening length, and to a screened
electrostatic (Yukawa) repulsion at larger center-to-center distances r
(Figure 5a),

uY(r) ∝
e−𝜅D(r−𝜎)

r∕𝜎
[1]

where h = r − 𝜎 for particles of diameter 𝜎. Access to the deep energy
minimum associated with dispersion forces is then prevented, as described
by the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory.72 The Debye
screening length 𝜅

−1
D depends on the Bjerrum length 𝜆B, which is the

distance between two unit charges when their Coulomb energy through
a medium with dielectric constant 𝜖r equals the thermal energy, i.e.,
kBT = e2

4𝜋𝜖0𝜖r𝜆B
. One can thus generate a fairly strong long-range repulsion

by tuning the dielectric constant 𝜖r of the solvent medium.
Second, a weaker attraction regime is obtained and controlled by sol-

vating globular non-adsorbing polymers. The polymer-mediated depletion
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attraction thus generated is well described by the Asakura-Oosawa–Vrij
(AO) model70, 73, 74

uAO(r)

=
⎧⎪⎨⎪⎩

∞ , r < 𝜎

−𝜌RkBT 𝜋

12
(𝜎 + 2RG)3

[
2 − 3 r

𝜎+2RG
+
(

r
𝜎+2RG

)3
]
, 𝜎 < r < 𝜎 + 2RG

0 , r > 𝜎 + 2RG

,

[2]

where 𝜌R and RG are the number density and radius of gyration of the sol-
vated polymer coils (Figure 5a).

Summing these two model contributions results in a short-range attrac-
tive and long-range repulsive (SALR) interaction75 (Figure 5a), sometimes
described as a “mermaid” potential, owing to its “attractive head” and “re-
pulsive tail”.76 Colloidal suspensions of particles with SALR interactions do
form various cluster mesophases,5 but only disordered ones, such as cluster
fluids and gels, have thus far been observed experimentally (Figure 5b).77, 78

The difficulty to realize periodic colloidal microphases is thought to result
from the non-additivity of the two types of interactions.75

Other Examples

In addition to the more common examples described above, a variety of
other microphase-forming systems have been reported. The compromise
between effective short-range order and long-range frustration can indeed
arise in a variety of other physical contexts, such as external rotating mag-
netic fields79 and Janus particles.80 Other schemes to form microphases have
also been explored. Introducing pairwise repulsion on two different length
scales, for instance, gives rise to stripe and cluster mesophases.81–83 Par-
ticles with very soft repulsive cores,84 as in certain dendrimer models,85

form multiply-occupied cluster crystals at high density.86–88 Purely repul-
sive interactions in rod-sphere mixtures89 and in pear-shaped particles,90

can even give rise to entropy-driven microphase formation.

Field Theory of Microphase Formation

It is not the purpose of the current review to discuss how various theoretical
tools have been brought to bear on the description of microphases. More
complete treatments based on liquid-state theory91, 92 or density functional
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theory (DFT),93, 94 for instance, can be found elsewhere. We here mostly
focus on the phenomenological field theory description of the universality
of the microphase formation and of the nature of the ODT.

The Ginzburg–Landau theory of gas–liquid-like phase transitions uses a
scalar order parameter, the density field 𝜙(r), and the (nearly) symmetric
nature of the pair interactions to express the free energy functional as an
even-order power series,

F0[𝜙(r)] = ∫ dr[a𝜙2(r) + b𝜙4(r) + c|∇𝜙(r)|2] [3]

where the first two terms capture uniform bulk contributions and the gra-
dient term accounts for the cost of forming domain walls or interfaces.95

Introducing long-range frustration as a repulsive potential uLR(r) generically
transforms the total free energy functional to96

F[𝜙(r)] = F0[𝜙(r)] +
1
2 ∬ drdr′𝜙(r)𝜙(r′)uLR(|r − r′|) [4]

Minimizing F[𝜙(r)] with respect to 𝜙(r) identifies the stability regime for
equilibrium microphases,2, 94, 97 whichever the microscopic origin of the
attractive and the repulsive contributions may be.

Analysis of this field theory further informs us on the universal nature of
the ODT. At the mean-field level, the ODT is second order in nature, albeit
in a different universality class than the gas–liquid critical point. In three
dimensions, however, the nature of the transition depends on the strength
of the frustration, or more precisely on whether the frustration is isotropic
or not. Isotropic frustration gives rise to a weakly first-order transition,11

but anisotropic frustration gives rise to a critical ODT transition, albeit of
a universality class that depends on the number of frustrated directions. As
a result, the universality of the Lifshitz point also depends on the type of
frustration98.

Molecular Simulations and Challenges

Although existing theoretical descriptions successfully explain the uni-
versality of some of the microphase-forming systems, they struggle to
provide quantitative estimates for any specific material and to describe
the richness of the disordered microphase regime. Molecular simulations
are standard recourses in this situation, but have long struggled to charac-
terize microphase formation. Despite extensive efforts at on- and off-lattice
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Monte Carlo (MC), molecular dynamics (MD), and other simulation
approaches to microphase-forming colloids,99–101 surfactants,102, 103 block
copolymers,104–107 and spins108, 109 the competing morphologies and
occupancies of microphases are challenging to equilibrate. Extracting
qualitatively (let alone quantitatively) reliable insight has thus largely been
out of computational reach. Direct simulation methods can generate certain
microphases and delineate a “dynamical phase diagram”, but the resulting
observations typically correspond to kinetically trapped metastable states
on the relatively short time scales accessible to molecular simulations.
Comparable kinetic hurdles to study simple equilibrium phases, such as
gas, liquid, crystal, and even liquid–crystal, have long been surmounted
through the development of specialized techniques, such as Frenkel–Ladd
thermodynamic integration for crystals, Gibbs ensemble MC for gas–liquid
coexistence, finite-size scaling analysis for critical points, etc.110 An equiv-
alent array of treatments for microphases, however, has long been missing.

The numerical challenge is two-fold.

1. Periodic microphases are characterized by both morphology and
occupancy (or, equivalently, periodicity), but molecular simulations,
which are necessarily finite in size, only allow for the formation
of patterns commensurate with the chosen box size. In addition,
arbitrarily initialized structures often become kinetically locked
in.76, 107, 109, 111 Because conventional simulation methods do not
include schemes for the lattice occupancy to fluctuate, relaxation to
the equilibrium microphase is thus highly unlikely. Even if an equi-
librium state is found by chance, a simple simulation scanning over
temperatures or densities will still fail to capture phase transitions,
because equilibrium morphology and occupancy evolve with the state
point. In this context, slow annealing or even parallel tempering are
of little help. In light of these challenges, simulation methods that
allow mesophase occupancy fluctuation,112 that account for it by free
energy calculations,113, 114 and that overcome barriers to transform
are essential to obtain equilibrium insight into periodic microphase
formation.

2. Disordered microphases also present a number of simulation chal-
lenges. For instance, achieving equilibration of low-density cluster
fluids entails establishing a kinetic balance of inter-cluster particle
attachments and detachments, which are slow and rare for they
involve crossing high energy barriers and require transport over large
distances. High-density fluids can also dynamically arrest in various
gel-like structures, and upon approaching the periodic microphase
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regime marked dynamical slowdown can emerge. Systems with very
strong repulsion further form clusters that arrest in a Wigner-like
glass. While slow annealing and parallel tempering do help reach
equilibrium in this regime, their computational cost can quickly
become out of reach.

In this review, we mainly discuss a free energy-based molecular
simulation approach to the equilibrium self-assembly of microphases,
which has been successfully applied to lattice spin models,115, 116 multiply
occupied cluster crystals,86, 88 and a schematic SALR colloidal microphase
former.1, 3, 117 Molecular simulations should thus here be interpreted in
the broadest possible sense, in the spirit of the seminal book by Frenkel
and Smit.110 We mostly consider very coarse-grained models, in which
“molecules” are not to be distinguished. These models might be the only
ones that are currently computationally accessible, but there should be no
fundamental obstacle to apply the methodology we present to more detailed
(molecular) models in the future.

The plan for the rest of this chapter is as follows. In section “Simulating
Periodic Microphases”, we first lay down the theoretical and computational
foundations for simulating periodic microphases and describe how phase
transitions can be determined in this regime. In section “Simulations of Dis-
ordered Microphases”, we mostly discuss several classical MC algorithms
to enhance the efficiency of simulating disordered microphases as well as
describe how different morphological regimes can be distinguished. Section
“Microphase Formers Solved by Molecular Simulations” then presents
examples of solved model microphase formers, and a brief conclusion
follows in Section “Conclusion”.

SIMULATING PERIODIC MICROPHASES

In this section, we describe molecular simulation methods that have been
specifically designed to achieve equilibrium in the periodic microphase
regime. We first detail the thermodynamic framework and a free energy
integration simulation method, followed by a concrete introduction to
the ghost particle/cluster switching method. The MC cluster volume
moves that accelerate sampling for some of the periodic microphases
are then explained. Finally, the approach to extract the order–order and
order–disorder phase transitions, including TODT, from the equilibrium
simulation results is discussed.



�

� �

�

94 REVIEWS IN COMPUTATIONAL CHEMISTRY, VOLUME 32

Expanded Thermodynamics

The Helmholtz free energy F(N,V ,T) for a one-component crystal is com-
pletely determined by the number of particles N, volume V , and temperature
T of that system. In numerical simulations, this phase is typically stud-
ied using finite, defectless crystals. Taking into account the contribution of
vacancies (and interstitials) to the free energy makes the thermodynamic
analysis trickier, because N then need not match the number of lattice sites,
Nc. In the thermodynamic limit, the average occupancy, nc ≡ N∕Nc, spon-
taneously equilibrates, but in finite-size simulations microscopic pathways
to achieve equilibrium might not be accessible.

To sidestep this challenge, Swope and Anderson introduced a general-
ized, constrained free energy Fc(N,V ,T ,Nc) with the differential form118

dFc = −SdT − pdV + 𝜇dN + �̃�cdNc [5]

where S is the entropy, p the pressure, 𝜇 the chemical potential and �̃�c the
variable conjugate to Nc, often described as a “site chemical potential”,
namely, the free energy cost of inserting one lattice site into the system. At

equilibrium, F(N,V,T) = Fc(N,V ,T ,Neq
c ), with �̃�c =

(
𝜕Fc

𝜕Nc

)
T ,V ,N

||||Nc=Neq
c

=0.

If the equilibrium state is (nearly) defect-free, as is it for most crystals,
then Neq

c ≈ N and the expanded thermodynamics reduces to the conventional
form. Certain vacancy-stabilized crystals, such as hard cubes, however, con-
tain a significant fraction of delocalized vacancies at equilibrium.119

The multiple-occupancy (cluster) crystals formed by certain
soft-core particles120 can also be described by such an expanded
thermodynamics.86–88 In this context, for a same overall number density 𝜌,
at a given T-𝜌 phase point, the system may adopt a small cluster occupancy
with a small lattice spacing or form larger clusters that are further apart.
The per particle free energy differential is then

dfc = −sdT − pdv + 𝜇cdnc [6]

where fc = Fc∕N, s = S∕N, v = V∕N = 1∕𝜌 and 𝜇c = −�̃�c∕n2
c .

Like cluster crystals, the mesoscopic domains of periodic microphases
need not have a fixed occupancy. The only adjustment is that nc in these
systems can also be understood as the line, area, or volume number den-
sity of the mesoscopic domain (see section “Thermodynamic Integration for
Microphases” for details). In any event, the equilibrium condition remains
unaffected; the equilibrium occupancy neq

c must be such that the constrained
free energy is minimized.
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The use of an expanded thermodynamics and the state-point-dependent
occupancy neq

c (T , 𝜌) is not merely a computational trick to identify the equi-
librium state. It also provides physical insight into the anomalous response
of these systems, including their heat capacity CV , bulk modulus BT , and
coefficient of thermal expansion 𝛼T . A response function  is generically
defined as the derivative of a thermal quantity Y (energy, enthalpy, volume,
etc.) with respect to a changing parameter x (temperature, pressure, chemi-
cal potential, etc.). Because Y is a function of neq

c , which itself changes with
x, at a given state point x0, periodic microphases then have121

(x0)≡ 𝜕Y(x, neq
c (x))

𝜕x

|||||x=x0

= 𝜕Y
𝜕x

||||x=x0;n
eq
c (x0)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

vir

+ 𝜕Y

𝜕neq
c

|||||neq
c =neq

c (x0);x0

⋅
𝜕neq

c

𝜕x

|||||x=x0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

domain
[7]

The “virial” termvir is associated with affine transformations of the lattice;
and the “domain” term domain is associated with the growth or shrinking
of domains, as lattice sites are either eliminated or created. For instance, the
bulk modulus of microphases under compression is softened by the growth
of the microscale domains. Similarly, microphases under isobaric heating
further expand by breaking up these domains. In practice, because a response
function can be expressed as fluctuations of thermal quantities, e.g., CV as
energy fluctuation and compressibility 𝜅T (= B−1

T ) as volume fluctuation,122

special attention needs to be paid if nc is fixed. Fluctuations at fixed nc only
capture the affine transformation of lattices constrained to a specific equilib-
rium occupancy. The clustering contributiondomain must thus be separately
calculated.86, 88

Thermodynamic Integration for Microphases

The expanded thermodynamics of microphases suggests a natural approach
for pinning down the equilibrium microphase, namely computing the con-
strained free energy fc(T , 𝜌, nc) for various occupancy nc (for every mor-
phology), and from these results identifying the conditions that minimize fc.
Free energies, however, cannot be extracted from straightforward ensemble
averages, as could energy and magnetization. They are instead obtained by
methods that bypass the formidable task of directly counting the number
of microstates. The canonical thermodynamic integration (TI) method123 is
one such method. The challenge is then to establish a reversible integration
path between a reference system 0 of known free energy f0 with the system
of interest 1 and thus obtain f1.
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A common (alchemical) approach to TI entails defining a coupled system
with potential energy U

𝛾
= (1 − 𝛾)U0 + 𝛾U1 as the linear combination of the

reference potential energy U0 and the actual potential energy U1 and then
compute

f1 − f0 = 1
N ∫

1

0
d𝛾

⟨
𝜕U

𝛾

𝜕𝛾

⟩
𝛾

= 1
N ∫

1

0
d𝛾⟨U1 − U0⟩𝛾 [8]

where ⟨· · · ⟩
𝛾

denotes thermal averaging in the coupled system with interac-
tion U

𝛾
.110 Although the choice of a TI path presents considerable freedom,

it must nonetheless meet two conditions: (i) f0 should be analytically (or
at least numerically) obtainable; (ii) the integration path along 𝛾 should be
continuous and reversible, in that it should not suffer from hysteresis like in
a first-order phase transition.

In the specific case of periodic mesophases formed by particles with
SALR interactions, a possible strategy is to follow a two-step TI proto-
col (Figure 6)117: (a to b) TI from free particles (ideal gas) under an exter-
nal periodic field, with energy Uid (rN), to denser purely repulsive particles
under the same field, with energy Urep

 (rN); and (b to c) TI from this end point
to a system of field-free, fully interacting particles.1 The key is to choose
an appropriate external field,  (r). To satisfy conditions (i) and (ii), the
field symmetry should be akin to the microphase morphology under study,
in addition to being sufficiently strong to prevent melting of the mesoscale
ordering during the TI path and sufficiently weak for the state of interest to
be approached without discontinuity for reasonable integration step sizes.
The reference state potential energy is then

Uid (rN) = −
N∑

i=1

 (ri) [9]

The external field  (r) for each microphase morphology are summarized
in Table 1.

To match the microphase morphology of interest, products of trigono-
metric functions of wavenumber k = 2𝜋∕𝜆—to obtain a periodicity 𝜆—have
mostly been used. (Including higher harmonics can produce a more sharply
confining potential, but relatively slow varying fields accelerate sampling.)
For example, for one-dimensional (1D) periodic lamellar phases, a sim-
ple sinusoidal function  (r) = 0 cos(kz) works, and the number density
per area of lamella, 𝜌

𝜆
= 𝜌𝜆 = 2𝜋𝜌∕k, can be used as the occupancy nc

parameter. For double gyroids, which are bicontinuous phases emerging



fF
id (β, ρ)

(a)

TI 1 TI 2

(b) (c)

fF
rep (β, ρ) fc

 (β, ρ)

FIGURE 6 Schematic representation of the two-step thermodynamic integration (TI 1 and TI 2) protocol. An external sinusoidal field
(solid line) is used to align (a) an ideal gas (small dots) and (b) purely repulsive particles (black disks). (c) If the field is properly chosen,
particles assemble into a similar periodic structure once the field is turned off and their SALR interaction is turned on (gray corona).
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TABLE 1 Measures of Occupancy nc and Reference Field  (r) for Different
Microphase Morphologies

Morphology nc  (r)

Lamellar Area density
per lamella

0 cos(kz)

Cylindrical Line density
per cylinder

0 cos(kx) cos
[
k
(

x

2
+

√
3y

2

)]
cos

[
k
(

x

2
−

√
3y

2

)]
FCC- cluster crystal Number of particles

per cluster
0 cos(kx) cos(ky) cos(kz)

BCC- cluster crystal Number of particles
per cluster

0{cos[k(x + y)] cos[k(x − y)]
cos[k(y + z)]
cos[k(y − z)] cos[k(z + x)]

cos[k(z − x)]}1∕2

Double gyroid Number of particles
per unit cell

0 sin[g(x, y, z)2], where
g(x, y, z) =
cos(kx) sin(ky) +

cos(ky) sin(kz) +
cos(kz) sin(kx)

(a)

x

F(r)

y y

z

x
y

z

x
(b) (c)

FIGURE 7 (a) A two-dimensional field (x, y) used for hexagonally packed cylin-
ders with 0 = 6 and k = 0.7. Contour surfaces at (b)  (r) = 400 and (c) 590 of
a three-dimensional double-gyroid field with 0 = 600 and k = 𝜋∕5, as defined in
Table 1.

from a minimal surface problem,97, 124 an approximate description of the
minimal surface in terms of sinusoidal functions125 has been shown to work
(Figure 7).

The free energy for noninteracting particles at global density 𝜌 and
inverse temperature 𝛽 = (kBT)−1 in any external field  (r) is then
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(see Appendix 3.A)

f id (𝛽, 𝜌) = f id(𝛽, 𝜌) − 1
𝛽

ln
∫Ve𝛽 (r)dr

V
[10]

where f id(𝛽, 𝜌) = 1
𝛽

[ln(𝜌Λ3) − 1] is the ideal gas contribution in absence of
field, with the thermal de Broglie wavelength Λ set to unity without loss of
generality.126 For convenience, we define

z (𝛽) = ∫V
e𝛽 (r)dr [11]

which reduces to z (𝛽) = V when  (r) = 0. Note that because  (r) is peri-
odic along one, two, or three directions with wavelengths 𝜆x, 𝜆y and 𝜆z,
respectively, z (𝛽) can be computed over a single period.

The endpoint at which the first TI terminates is a system of repulsive
particles in a field at the target number density 𝜌. The total potential energy
is then

Urep
 (rN) = −

N∑
i=1

 (ri) +
∑
j>i

urep(rij) [12]

and hence the integration

f rep
 (𝛽, 𝜌) = f id (𝛽, 𝜌) + ∫

𝜌

0

p(𝜌′) − 𝜌
′∕𝛽

𝜌
′2

d𝜌′ [13]

is analogous to obtaining the free energy of a simple liquid in absence of
field. The pressure p as a function of 𝜌 can be calculated from the aver-
age ⟨𝜌⟩ under constant NpT simulations and then inverting the function. To
preserve the modulation of anisotropic mesophases, however, volume fluc-
tuations then require special care (see Appendix 3.B).

Numerically evaluating the integral in Eq. [13] at low densities can be
computationally taxing without specialized simulation methods (see, e.g.,
section “Aggregation Volume Biased (AVB) Moves”). In this regime, one
can instead analytically obtain the first two (or more) virial coefficients of the
virial series 𝛽p−𝜌

𝜌
2 = B2 + B3𝜌 + (𝜌2) for repulsive particles in a field127, 128

(see Appendix 3.C)

Brep
2, (𝛽) = − V

2z2 (𝛽)∬V
dr1dr2f rep

12 e𝛽 (r1)e𝛽 (r2) [14]
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Brep
3, (𝛽) = − V2

3z3 (𝛽) ∭V∭V
dr1dr2dr3f rep

12 f rep
13 f rep

23 e𝛽 (r1)e𝛽 (r2)e𝛽 (r3)

[15]
with Mayer function f rep

ij = e−𝛽urep(rij) − 1. (As above, the integral z (𝛽) can
be simplified for specific field symmetries.) The numerical results for the
equation of state can then be approximated by polynomial fitting, using Brep

2,
and Brep

3, as relevant coefficients.
The second TI step, as in Eq. [8], brings finite-density repulsive particles

in a field to field-free fully interacting SALR particles with

U(rN) =
∑
j>i

[urep(rij) + uSALR(rij)]. [16]

Summing the various contributions along the integration path finally
gives the constrained free energy for a given microphase morphology and
lattice occupancy

fc(𝛽, 𝜌) = f id(𝛽, 𝜌) − 1
𝛽

ln
∫Ve𝛽 (r)dr

V
+ ∫

𝜌

0

p(𝜌′) − 𝜌
′∕𝛽

𝜌
′2

d𝜌′

+ 1
N ∫

1

0
d𝛾

⟨
𝜕U

𝛾

𝜕𝛾

⟩
𝛾

[17]

The equilibrium free energy f (𝛽, 𝜌) and microphase occupancy at state point
(𝛽, 𝜌) are then obtained by minimizing Eq. [17] with respect to nc.

Ghost Particle/Cluster Switching Method

Conventional simulation methods fail to equilibrate periodic structures with
fluctuating occupancy because nc (or, equivalently, Nc) cannot straightfor-
wardly change within a finite-size box. The TI scheme presented above
sidesteps this problem by simulating a series of systems with different nc and
locating neq

c (by free energy minimization) afterward. Even with good initial
guesses for neq

c , however, this approach can be computationally demanding,
because multiple simulations must be done for each and every state point of
interest. The ghost particle/cluster switching method proposed by Wilding
and Sollich112 allows Nc to fluctuate and its equilibrium value to be obtained
via histogram reweighting, all within a single (properly tuned) simulation.
The method was originally designed for cluster crystals, but generalizing
it to microphase-forming SALR particles should be possible, at least for
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α = 0

Nc + Mc
McNc

α = 1

FIGURE 8 Schematic illustration of ghost particle/cluster switching between state
𝛼 = 0 with Nc + Mc sites and state 𝛼 = 1 with Nc real sites plus Mc ghost sites.
Source: Adapted from Ref. [112]

certain phase symmetries. It does not, however, straightforwardly apply to
lattice microphase formers.

The key idea is to construct a reversible sampling path, 𝛼, between two
states: one with Nc + Mc lattice sites (𝛼 = 0) and the other with Nc lattice
sites (𝛼 = 1), where Mc = Nc∕m is a small fraction of Nc with (large) inte-
ger m (Figure 8). Typically, Mc is chosen such that state 0 has one or a few
more layers of lattice sites than state 1. At average occupancy nc, the number
of particles is proportional to the number of sites, N(0) = nc(Nc + Mc) and
N(1) = ncNc, and the relative volume of the states scales similarly, V (1) =
V (0)m∕(m + 1). For notational convenience, we express the position of par-
ticle i, around lattice site 𝛾(i) in state 𝛼 as r⃗(𝛼)i = R⃗(𝛼)

𝛾(i) + u⃗i, where R⃗(𝛼)
𝛾(i) is the

lattice position of site 𝛾(i), and u⃗i is the displacement vector from 𝛾(i). All
particles assigned to a same site 𝛾 thus share a same R⃗(𝛼)

𝛾
. The first Nc sites

of the two states are the same, i.e., R⃗(0)
𝛾

= R⃗(1)
𝛾

for 𝛾 = 1,2, … ,Nc, and so
are r⃗(0)i = r⃗(1)i for particles associated with these first Nc sites. In state 𝛼 = 0,
the additional Mc sites stack regularly on one side of the first Nc sites, but in
state 𝛼 = 1 their positions are arbitrary. Upon switching from 𝛼 = 0 to 𝛼 = 1,
particles associated with these Mc sites become “ghost” particles that only
experience a harmonic confining potential 𝜙g(u⃗i). Ghost particles thus only
inherit their displacement u⃗i and site association 𝛾(i) from their interacting
counterpart.

MC simulations can then be performed in the constant-𝜇pT ensemble
using standard sampling moves for particle displacements, volume fluc-
tuations, and particle insertions/deletions,110 and including attempts at
exchanging the two states, 𝛼 ↔ 1 − 𝛼, which are accepted with probability,
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Pacc = min
[
1, V(1−𝛼)

V(𝛼) exp(−𝛽(pΔV + ΔE ± (𝜇 − 𝜇g)Ng))
]
, where 𝜇g is

the ghost chemical potential—chosen so as to yield an average nc to
that of real sites—and Ng is the instantaneous number of ghost parti-
cles. In practice, such switches suffer low acceptance rates. To enhance
the probability of each 𝛼, a weight function 𝜂

𝛼
(𝜈) of the instantaneous

switch cost 𝜈 = exp(𝛽(pΔV + ΔE ± (𝜇 − 𝜇g)Ng)), which is obtainable via
Wang–Landau sampling,129 is added upon Pacc to bias the moves.

Note that in standard circumstances, simulating the generalized 𝜇pT
ensemble would be of limited interest, for without specifying an extensive
quantity, such as N or V , it leads to unbounded fluctuations.130 However,
in simulations of crystals (with multiple occupancy), the inaccessibility of
pathways that change Nc conveniently bounds the fluctuations of N.121 The
partition function for this ensemble is then

Z(𝜇, p,T ,Nc) =
∑

N

e𝛽𝜇N ∫ dVe−𝛽pV ∫ dEeS(N,V ,E,Nc)∕kB e−𝛽E

= e𝛽𝜇N∗
e−𝛽pV∗

eS(N∗
,V∗

,E∗
,Nc)∕kBe−𝛽E∗

= e𝛽𝜇Ncn∗c e−𝛽pNcv∗c eNcs(n∗c ,v
∗
c ,e

∗
c )∕kB e−𝛽Nce∗c

[18]

which corresponds to the optimal values of the extensive variables (∗) in the
thermodynamic limit. Using the form with Nc factorized out gives

−kBT ln Z(𝜇, p,T ,Nc) = Nc[e∗c − Ts(n∗c , v∗c , e∗c ) + pv∗c − 𝜇n∗c ] = Nc�̃�c,

[19]
because the constrained Gibbs free energy Gc = 𝜇N + �̃�cNc = Fc + pV .
Equilibrium is then attained when �̃�c = 0, or, in other words, when
Z(𝜇, p,T ,Nc) becomes independent of Nc and any two quantities of the
triplet (𝜇, p,T) determine the third.

If a set (𝜇, p,T) is chosen arbitrarily for the ghost particle/cluster switch-
ing, nonequilibrium states are most likely sampled, but histogram reweight-
ing can correct for this mistake,131 if it is not too large. By measuring the
probability distribution P(N,V ,E|𝜇, p,T) along the simulation, one can bias
the weights 𝜂

𝛼
and sum over (N,E) to obtain the marginal probability distri-

bution for the volume P(V|𝜇, p,T), which should exhibit two peaks corre-
sponding to states 𝛼 = 0 and 1. The area under each peak, P(𝛼), gives the
probability that each state 𝛼 is visited. Because Z(𝜇, p,T ,Nc) is also the
weight with which different Nc is sampled, then P(0)∕P(1) = Z(𝜇, p,T ,Nc +
Mc)∕Z(𝜇, p,T ,Nc). At equilibrium, Z(𝜇, p,T ,Nc) should be independent of
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Nc, and one should thus have P(0)∕P(1) = 1. Using histogram reweighting to
explore neighboring (𝜇′

, p′) to the simulated conditions, equilibrium can be
found by making sure that two peaks of P(V|𝜇′

, p′,T) have the same area.
In principle, the ghost particle/cluster switching method can be applied

to SALR microphase formers, but no explicit demonstration yet exists.
We anticipate that a number of technical problems would first need to be
addressed. First, SALR particles possess harshly repulsive cores, which
can significantly reduce the efficiency of particle insertion. Second, a
simple harmonic potential constraining ghost particles to lattice sites
cannot prevent particle overlaps, and may thus not be suitable for main-
taining large mesoscopic domains, such as lamellae. Third, expanding a
three-dimensional network structure like a gyroid, while maintaining its
periodicity, would be computationally challenging, because a relatively
large state 0 would then have to be sampled.

Cluster Volume Moves

Both of the above simulation schemes for periodic microphases rely on
ensembles in which pressure is kept constant, and thus, the system volume
is allowed to fluctuate. These fluctuations are traditionally implemented by
scaling particle positions affinely along with the box size.110 Because by
definition, periodic microphases present high-density mesoscopic domains
separated by low-density interstitial spaces, the sampling efficiency of such
moves can be extremely low. A small affine compression can cause signif-
icant particle overlap within mesodomains, resulting in prohibitively high
energy cost, while shrinkage of gaps between mesodomains, which ought
to be the natural response to external pressure, is inefficiently sampled. To
overcome this problem, a cluster move first proposed by Schultz and Kofke
for crystals132 has been adapted to the simulation of multiple-occupancy
cluster crystals.121 The volume sampling efficiency is then increased by up
to three orders of magnitude.

The key idea of this scheme is to separate the displacement of the clusters
from that of the particles within these clusters (Figure 9). In this context, the
position of particle i is decomposed as R

𝛾(i) + ui. The algorithm is then as
follows.

1. Propose a volume change from V to V + ΔV uniformly at random on
a logarithmic scale and compute the overall energy cost ΔU.

2. Rescale lattice sites affinely as R
𝛾,new = R

𝛾,old[(V + ΔV)∕V]1∕3.
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(a) (b)

FIGURE 9 Comparison between conventional and cluster volume moves during
compression. (a) In conventional volume compression, all particle positions are
rescaled affinely with the simulation box from the old (solid square) to the new
(dashed square) size, which is likely to cause significant particle overlaps within
each cluster (dashed circles). (b) In cluster volume compression, the lattice sites
(small black dots) are first rescaled affinely to new positions (small black circles)
together with the box, and particles are then moved relative to their own lattice sites.
In such a scheme, spacing between clusters can be greatly reduced while overlaps
within clusters are prevented.

3. Update the relative displacement vectors as

ui,new = ui,old

( V
V + ΔV

e𝛽(pΔV+ΔUlattice)
) 1

3(N−1)
[20]

with acceptance probability

Pacc(V → V + ΔV ,U → U + ΔU) = min{1, e−𝛽(ΔU−ΔUlattice)} [21]

where ΔUlattice is the change of lattice energy for a perfect single occu-
pancy crystal.

Decomposing particle displacements in two steps allows lattice sites to be
brought together without overcompressing the clusters themselves, and lat-
tice sites to be expanded without breaking bonds between particles in a same
cluster. Because this formulation relies on holding the conservation of center
of mass fixed, however, special care must be made to track its motion dur-
ing the simulation. This method can also be extended to (non-percolating)
anisotropic periodic microphases, such as layers, cylinders, and clusters,117
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but anisotropic volume moves must then be implemented. No version of this
scheme for the fully percolating gyroid phase has yet been formulated.

Determining Phase Transitions

Once the free energy of the different mesophases at a sufficient number
of state points has been obtained, the first-order transitions between
pairs of periodic mesophases as well as between periodic and disordered
mesophases can be determined by locating the kink in the equilibrium
free energy at fixed density or by standard common tangent construction
at fixed temperature.133 The process is akin to that used for the fluid–crystal
coexistence of simple fluids and can be complemented by the Gibbs–Duham
construction when appropriate. The Gibbs phase rule is then a useful guide
to identify the location of the triple points.

Determining TODT is more subtle. For systems in which this transition
remains critical, standard approaches for locating critical points, such as
Binder cumulants,134 can be used. For systems in which this transition is
weakly first-order, however, standard approaches might not suffice. The free
energy kink associated with the transition is then quite difficult to detect
numerically, and no length scale critically diverges at the transition. Relying
on the analogy with a proper critical point is nonetheless the more promising
approach. Examining the decay of the finite-wavevector fluctuations in the
periodic microphase regime upon approaching that point, for instance, is
expected to exhibit a critical-like decay, before reaching a cutoff (Figure 10).
The most effective simulation methodology for detecting this transition,
however, remains to be determined.

1

o
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et
er

0
TODT Tc T

FIGURE 10 A weakly first-order order-disorder transition (ODT) is characterized
by a discontinuity of order parameter at TODT (solid line). By contrast, the order
parameter of a standard critical transition vanishes continuously at Tc (dashed line).
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SIMULATIONS OF DISORDERED MICROPHASES

Given the appealing morphologies and broad applications of periodic
microphases, it is not surprising that physical attention has primarily been
given to that materials regime. Understanding disordered microphases,
however, is also an essential materials endeavor. The disordered regime is a
precursor to periodic mesoscale ordering and its morphological richness is
comparable to that of its periodic counterpart. For example, in the language
of colloidal microphase formers, upon increasing density, a gas of particles
can condense into a gas of clusters, then grow into wormlike micelles
that eventually percolate, and inverted structures are expected at higher
densities.135

Surprisingly, our theoretical understanding of the disordered microphase
regime is relatively poor. Some exactly solvable 1D systems exhibit a clus-
tering crossover, but these clusters cannot significantly grow nor percolate;
standard mean-field (and density-functional) descriptions miss most of the
structural heterogeneity in this regime (see, however, Ref.136); and exist-
ing liquid-state descriptions are insensitive to many of their rich topologi-
cal features. For now, this disordered regime is thus best understood using
molecular simulations, but this approach is not without challenges.

From a computational standpoint, parallel tempering (PT), or replica
exchange, has a long track record of surmounting barriers to rearrangement
in frustrated systems of various kinds.3, 137–141 The genericity of the
PT approach, however, does not leverage the structural and dynamical
specificities of the various disordered microphase regimes. To surmount the
relatively high computational cost of PT, complementing or substituting it
with other sampling schemes is thus highly desirable. In this section (see
also Ref.142), we first describe various simulation methods and their use for
different morphological regimes and then describe how to detect changes
from one regime to another.

Wolff-Like Cluster Algorithms

Conventional single-particle moves become extremely inefficient upon
approaching the standard gas–liquid (paramagnetic–ferromagnetic) critical
point Tc. Critical fluctuations and time correlations then grow large,
making such moves inefficient at decorrelating configurations.143 In spin
systems without frustration (i.e., at 𝜉 = 0), this critical slowing down
can be largely surmounted with the help of cluster algorithms, such as
Swendsen–Wang’s144 and Wolff’s.145 The key is to group similarly oriented
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spins into clusters and to flip them all at once, subject to a selection rule
that preserves microscopic reversibility.143

The single spin-flip dynamics of systems with 𝜉 > 0 also slows down
upon approaching the order–disorder transition, irrespective of whether 𝜉 is
below or above the Lifshitz point 𝜉L. In certain very weakly frustrated mod-
els, a generalized Wolff cluster algorithm has found some use.115, 116, 146 In
a generic Ising-like lattice model, where spins are under nearest-neighbor
ferromagnetic interaction of strength −J (J > 0) and long-range antiferro-
magnetic frustration of strength 𝜉J, the algorithm is as follows.

1. Choose uniformly, at random, a site i to seed the cluster.

2. Add ferromagnetically and antiferromagnetically interacting neigh-
bors of i to the cluster with probability Pferro = 1 − e−2𝛽J and
Panti = 1 − e−2𝛽𝜉J , respectively.

3. Use the spins added to the cluster as new seeds, stopping the cluster
growth when all neighbors of all seeds have been considered.

4. Flip the entire cluster with probability one.

In most frustrated systems, however, this generalization does not effi-
ciently sample configurations.147 Instead, the trial clusters reach a percola-
tion transition at temperature, Tp, well before the critical regime is reached,
i.e., Tp > Tc. (In the simple Ising model, both transitions coincide.148) As a
result, even for quite small 𝜉, the efficacy of cluster moves degrades quickly
with 𝜉. Most cluster moves uselessly flip nearly all lattice sites.149–151 An
elegant algorithmic solution to this problem has not yet been identified, let
alone an off-lattice generalization.

Virtual Cluster Moves

In the cluster fluid regime, clusters diffuse more slowly than individual par-
ticles, hence the displacement of the latter cannot be relied upon to sample
configurations of the former efficiently. Naively displacing whole clusters
at once, however, is not microscopically reversible. Cluster–cluster colli-
sions, for instance, are problematic. A virtual cluster move algorithm first
proposed by Whitelam and Geissler152 solves this problem. The key idea is
to grow a pseudocluster  out of a seed and of particles within its interaction
range (Figure 11). The algorithm is as follows.

1. Select uniformly, at random, a seed particle i.

2. Add (interacting) neighboring particles j’s of i to the pseudocluster 
with probability Pij.
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C C2

C1

Iμ

μ

Iν

ν

FIGURE 11 A move of a virtual cluster  (shaded) from state 𝜇 to 𝜈, which breaks
the interface I

𝜇
between  and other particles in the physical cluster 1 and forms a

new interface I
𝜈

with another physical cluster 2. A particular iterative linking proce-
dure is reflected in the connecting bonds through . Source: Adapted from Ref. [152]

3. Use the particles added to  as new seeds, stopping the cluster growth
when all neighbors of all seeds have been considered. Note that  is
usually a subset of a physical cluster.

4. Propose a collective displacement 𝜇 → 𝜈 of . Note that such a move
involves breaking the interface between  and the rest of the physical
cluster, with energy cost E

𝜇
, and forming an interface between  and a

new physical cluster, with energy gain E
𝜈
.

5. Accept this move with probability

Pacc(𝜇 → 𝜈) = Θ(ncut − n)min

⎧⎪⎨⎪⎩1, e−𝛽(E𝜈
−E

𝜇
)

∏
I
𝜈

[1 − Pij(𝜈 → 𝜇)]∏
I
𝜇

[1 − Pij(𝜇 → 𝜈)]
∏
⟨ij⟩

Pij(𝜈 → 𝜇)
Pij(𝜇 → 𝜈)

⎫⎪⎬⎪⎭ ,

[22]

where Θ(x) is a Heaviside step function that returns zero if the num-
ber of particles in , n , is greater than a specified cutoff ncut. The
product

∏
I
𝜇

runs over all links across the interface I
𝜇

that do not form

during 𝜇 → 𝜈. The product
∏
⟨ij⟩ runs over all links that realize one way to

form a .

Different choices of Pij(𝜇 → 𝜈) and ncut result in different pseudocluster
sizes and acceptance ratios. They can thus be tuned to optimize the algo-
rithmic efficiency. For instance, one can take Pij to be a function of the
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Boltzmann weight of breaking a bond and draw ncut from a power-law dis-
tribution during each move.

Although virtual cluster moves accelerate cluster displacements, they
also involve a significant computational overhead. MC implementations
thus far typically only use a relatively small overall fraction (∼ 1∕N) of such
moves.3 And although this scheme enhances cluster transport, it still largely
relies on single-particle transport and cluster collisions for particles to be
exchanged. Equilibrating the cluster size distribution can thus remain fairly
sluggish.

Aggregation Volume Biased (AVB) Moves

The generic sampling challenge of trafficking particles between different
microphase domains—in cluster fluids and elsewhere—must be surmounted
for the shape and size distribution of these domains to be equilibrated
efficiently. Standard single-particle displacements require either domain
collision, or for the bond between a particle and its original domain to
be broken and then for that particle to meander in the inter-domain space
before reassociating with another domain. Because both the bond-breaking
and the diffusion processes are slow with standard local algorithms, nonlo-
cal moves are a natural avenue to consider. The removal of a particle and its
reinsertion uniformly at random within the simulation box, however, does
not regularly result in a domain surface to domain surface displacement.
Aggregation-volume-biased (AVB) MC sampling partly fixes this drawback
by biasing the insertion of a particle as the surface of another.153

The AVB algorithm proceeds as follows (Figure 12).

1. Select uniformly, at random, a particle i to be displaced.
2. Select uniformly, at random, particle j (j ≠ i) toward which moving i

will be considered.

in in

i

i

j

Vout

Vin

out in

FIGURE 12 An out → in AVB move of particle i from the nonbonded region (of
volume Vout) of the target particle j to its bonded region of volume Vin, indicated by
j’s interaction range (large solid circle). An in → in move of particle i′ is also shown.
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3. Move i to the bonded region of j with a bias probability Pbias (in state)
or to the nonbonded region of j with probability 1 − Pbias (out state).

4. Depending on whether i lies originally inside or outside the bonded
region of another particle, four types of transitions are possible: in →
in, out → out, in → out, and out → in. The first two cases reduce to
the standard Metropolis acceptance rule, and the last two cases have
an acceptance probability

Pacc(out → in) = min

{
1,

(1 − Pbias)
Pbias

Vin

Vout
e−𝛽ΔU

}
[23]

and

Pacc(in → out) = min

{
1,

Pbias

(1 − Pbias)
Vout

Vin
e−𝛽ΔU

}
[24]

where Vin is the volume of the bonded region and Vout = V − Vin is the
remainder.

In the context of colloidal microphase formers, the bonded region can be
chosen as the attractive shell of the SALR potential. In some systems, it has
been observed that using about ∼ 10% AVB moves optimally equilibrates
cluster fluids,117 but no systematic parameter tuning has been undertaken in
other regimes (see, however, Ref.142).

A significant caveat to this approach is that if domains are large, the
attractive shell that surrounds a particle is a relatively inefficient region of
space toward which to bias sampling. Most particles are then fully sur-
rounded by neighbors, and hence, only a small fraction of the shell vol-
ume would allow insertion to proceed. A possible solution could be to bias
toward unoccupied shell space alone. Identifying available surface sites can
be done fairly efficiently on a lattice, but in continuous space, the geom-
etry is intractable other than through gridding. Either option has yet to be
algorithmically explored.

Morphological Crossovers in the Disordered Regime

Because the morphological changes in the disordered microphase regime are
not proper phase transitions, their delimitation is subject to a certain degree
of arbitrariness. Reasonably robust schemes can nevertheless identify the
clustering and the percolation transitions.

The low-density onset of disordered microphase formation entails form-
ing clusters at temperatures of the order of TODT.13, 100, 154–156 When parti-
cle concentration exceeds the critical micelle concentration (cmc), or more
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generically, the critical cluster density (ccd), the systems goes from being
mostly a gas of individual particles to being mostly a gas of particle clus-
ters. This transformation is a crossover, not a phase transition, because it
cooperatively involves only a finite number of particles.157 The structural
signature of aggregation could be followed directly in molecular simula-
tions, but the non-universality of the process makes its determination some-
what nontrivial. While surfactant micelles tend to be fairly homogeneous in
size and shape, clusters of colloidal microphase formers have a size distri-
bution P(n) that is fairly wide and non-Gaussian.158–161 Cluster morphol-
ogy and size distribution depend sensitively on the details of the interaction
potential.162 For instance, as the effective repulsion strength increases, so
does cluster size heterogeneity.163 This heterogeneity presents a hurdle to
choosing structural order parameters for clustering detection. (It also sup-
presses the direct assembly of these clusters into a periodic cluster crystal at
higher densities,117, 164 in contrast to Ref. 99).

Determining the cmc and the ccd from the structure can be avoided by
falling back on their definitions as the point of most abrupt change in the
system physiochemical properties.165, 166 Different schemes have been pro-
posed. A peak in the heat capacity indicates the changing energetics of the
system.167 From an (osmotic) pressure viewpoint, one could also determine
𝜌ccd or 𝜌cmc from the intersection of two nearly ideal gas regimes—of single
particles and clusters—in the equation of state.168 Whereas this approach
works well for micelle formation, clusters colloidal microphase formers
interact strongly and more heterogeneously, which takes them farther from
the ideal limit. In those cases, higher-order deviations from the ideal gas
equation3 can be considered; For instance, one can use

h(𝜌; 𝛽) ≡ 𝛽p − 𝜌

𝜌
2

= B2(𝛽) + B3(𝛽)𝜌 + B4(𝛽)𝜌2 + … [25]

where Bn is the nth virial coefficient. The non-monotonicity of this function
in cluster-forming systems reflects the competition between attraction that
drives aggregation and repulsion between these aggregates. A pronounced
valley in h(𝜌; 𝛽) corresponds to a rapid change in pressure response in that
density regime and thus provides an estimate of 𝜌ccd(𝛽).

Increasing the fluid density beyond the onset of clustering commonly
extends the roughly spherical clusters into wormlike clusters and then to
a disordered percolating network. Once again, this change is not a ther-
modynamic phase transition, but the morphological change is nonetheless
associated with marked changes to the sampling efficiency of certain MC
sampling algorithms.117, 135 Virtual cluster moves, in particular, are then
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essentially irrelevant. The onset of percolation, 𝜌p(T), can be reliably
identified using the finite-size scaling results from percolation theory.169

Specifically, the probability Pp(𝜌,T;N) that at least one giant cluster
network exists spanning the entire system grows with 𝜌 as a sigmoid. As the
system size increases, that sigmoid sharpens, hence in the thermodynamic
N → ∞ limit, percolation is sharply defined. Given the mid-point (𝜌 = 𝜌 1

2

and Pp = 1
2
) of this sigmoid, 𝜌p(T) = 𝜌 1

2
(T;N → ∞) can be obtained

from critical scaling 𝜌 1
2
(T;N) = N−1∕d𝜈 + 𝜌p(T), where d𝜈 = 2.706 is the

universal scaling exponent for simple percolation in d = 3.169

Other dynamically relevant morphological regimes have been identified
within the disordered phase, but their systematic characterization and their
onset is not as mature as for clustering and percolation. These regimes are
therefore not here further discussed, and we instead refer readers to the orig-
inal literature on the topic.135

MICROPHASE FORMERS SOLVED BY MOLECULAR
SIMULATIONS

Although a number of model microphase formers have been studied by
molecular simulations, relatively few of these have used free energy-based
methods to obtain reliable equilibrium phase information. In this section,
we present three models for which quantitative results have been obtained:
a 1D, a lattice, and an off-lattice microphase former. These models also illus-
trate the various tools described in the previous two sections, as well as the
diversity of contexts in which microphase formation can be observed.

One-Dimensional Models

1D models with sufficiently short-range interactions cannot undergo
thermodynamic phase transitions170 nor percolate to form a gel, but can
exhibit a distinct clustering regime.171, 172 Because these models can be
solved analytically and are straightforward to simulate, they are also ideal
benchmarks.

Both on- and off-lattice 1D models with SALR interactions can be solved
by transfer matrix. The former is akin to solving for the Ising chain,173

but the latter is a bit more involved. It requires changing absolute parti-
cle positions x to relative distances between neighboring particles s, i.e.,
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si = xi, si+1 = xi+1 − xi, etc., and then writing the isothermal-isobaric con-
figurational integral as

ZG(p, 𝛽) = ∫
∞

0

N∏
i=1

dsie
−𝛽ui(si,si+1,…)−𝛽psi = Tr MN = ΛN

max [26]

where ui is the sum of pairwise interactions between particle i and its
subsequent neighbors (i + 1, i + 2, … ) along the chain. The last equality
only holds in the thermodynamic limit. If the interaction consists of a hard-
core of size 𝜎 = 1 and a SALR potential of finite range 𝜅𝜎, for instance,
then only up to k = ⌈𝜅⌉ − 1 nearest neighbors can interact at once. Under
periodic boundary condition, ZG can thus be written in terms of the transfer
matrix M, with each entry containing the Boltzmann weight for a particular
choice of (si, si+1, … , si+k−1) along each row and (si+1, si+2, … , si+k)
along each column. Only when a row and a column have matching
(si+1, si+2, … , si+k−1), is the entry nonzero.

Transfer matrix results can be used to benchmark the equation of state
and the cluster size distribution extracted from molecular simulations
(Figure 13). This comparison reveals that combining single-particle dis-
placements with a 1D analogue of AVB sampling equilibrates the system
with remarkable efficiency.160 This model further illustrates how the ccd
can be determined using the equation of state (Figure 13).

Lattice Spin Models

Lattice spin models with frustrated interactions can display a broad
array of microphase morphologies. These models are also amenable
to various exact theoretical treatments and are thus appealing as theory
and simulation benchmarks. They vary in the nature and extent of the
frustration of nearest-neighbor, ⟨ij⟩, couplings, including interactions
between next-nearest neighbors in one or multiple 𝛼-axial directions⟨⟨ij⟩⟩(𝛼) and between diagonal nearest-neighbors [ij]. For simplicity, we
here only consider models with no external magnetic field.

The most weakly frustrated, axial next-nearest-neighbor Ising (ANNNI)
model has Hamiltonian

ANNNI = −J1

∑
⟨ij⟩ sisj + J3

∑
⟨⟨ij⟩⟩(𝛼) sjsj [27]
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for spin variables, si = ±1. More strongly frustrated variants include biaxial
(or more) frustration, such as the BNNNI model,

BNNNI = −J1

∑
⟨ij⟩ sisj + J3

∑
⟨⟨ij⟩⟩(𝛼,𝛽) sjsj [28]

or diagonal frustration, such as the DNNNI model,

DNNNI = −J1

∑
⟨ij⟩ sisj + J2

∑
[ij]

sjsj [29]

Note that on a cubic lattice without external magnetic field the sign of J1 is
not important because the problem can be divided into two independent sub-
lattices. The J1–J2 model,175 equivalently defined as the sum of two compet-
ing antiferromagnetic interactions, is the more common formulation of the
DNNNI model. Combining both of these frustration types with J2 = 2J3
further gives rise to the (simplified) Widom–Wheeler model for surfactant
microemulsions

WW = −J1

∑
⟨ij⟩ sisj + J2

∑
[ij]

sjsj + J3

∑
⟨⟨ij⟩⟩ sjsj [30]

The ANNNI model is the only of these models for which a reasonably
complete simulation phase diagram has been obtained thus far (in three
dimensions).116, 146 Because frustration in the ANNNI model is only along
a single axis, the T = 0 phase diagram can be solved analytically,60, 176, 177

and only layered mesophases form at low temperatures below the Lifshitz
point. The weakness of the frustration also seemingly prevents the genera-
tion of large, percolating cluster moves in the generalized Wolff algorithm
at temperatures above the critical point (see section “Simulations of Dis-
ordered Microphases”). Accurate estimates of the criticality at the Lifshitz
point and at stronger frustration are thus computationally accessible through
finite-size scaling analysis.116, 146, 178

The resulting T-𝜅 phase diagram, with 𝜅 ≡ J3∕J1, is divided into several
regimes, including a high-temperature paramagnetic state, a ferromagnetic
(or antiferromagnetic) ground state at low 𝜅 and a modulated phase regime
at high 𝜅 (Figure 14). The multicritical Lifshitz point, at which three phases
(and two types of criticality) meet, is found at (𝜅L,TL) ≈ (0.27, 3.75).146, 179

The relative free energy of the modulated phases and thus their ordering
can be solved by molecular simulations using TI (section “Simulating Peri-
odic Microphases”). These computations confirm the mean-field prediction
that lamellae thin as frustration increases177 as well as the low-temperature
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series expansion analysis that an infinite number of lamellar phases
with different periodicities spring out at T = 0 and 𝜅 = 0.5. Accurate
results at intermediate temperatures were long inaccessible to conventional
theory and simulations, but molecular simulations using TI provide crisp
phase boundaries even in that regime. They have thus revealed that stable
regions of lamellar phases like ⟨3⟩ or ⟨23⟩ are stripe-like rather than
bulging.88, 116

Colloidal Models

Various combinations of attractive and repulsive potential forms have
been used to model colloids with SALR interactions, including explicit
descriptions of depletion attraction with screened-Yukawa repulsion,
coupling Lennard-Jones attraction with Yukawa repulsion, and placing
two Yukawa interaction forms in competition.13, 70, 99, 180 These models
are all expected to exhibit the full microphase phenomenology, but also
present marked simulation challenges in configurational sampling. Most
studies have struggled to equilibrate the periodic microphase regime, in
particular.

For colloid-like systems, molecular simulations using TI (section
“Simulating Periodic Microphases”) have thus far only been used for
the schematic square-well linear (SWL) model.3, 117 The SWL potential,
uSWL(r) = uHS(r) + uSALR(r), adds to a hard-core repulsion of diameter 𝜎,
a square well (SW) attraction of strength 𝜖 and a linear repulsive ramp, and
hence

uSALR(r) =
⎧⎪⎨⎪⎩

−𝜖 , r < 𝜆𝜎

𝜉𝜖(𝜅 − r∕𝜎) , 𝜆𝜎 < r < 𝜅𝜎

0 , r > 𝜅𝜎

[31]

where 𝜉 and 𝜅 control the repulsion strength and range, respectively.
A sample T-𝜌 phase diagram for the SWL model with 𝜉 > 𝜉L is shown

in Figure 15. In the high-temperature disordered microphase regime, a
single-particle gas phase at very low densities is replaced by a fluid of
clusters as the system crosses the ccd. Further increasing density elongates
the clusters, which eventually coalesce into a percolated fluid network.
Upon lowering temperature, the disordered microphase regime undergoes
a first-order transition into the periodic microphase regime. The highest
temperature at which lamellae are stable, TODT, is a weakly first-order
transition. In the periodic regime, the characteristic cluster–cylinder–double
gyroid–lamellae morphology sequence is observed as density increases.
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FIGURE 15 T-𝜌 phase diagram of the SWL model at 𝜉 = 0.05, 𝜅 = 4
and 𝜆 = 1.5.117 Shaded areas denote coexistence regimes at first-order tran-
sitions and terminate at the maximum periodic microphase stability tempera-
ture, TODT (filled circle). Three triple points (solid squares) can be identified:
fluid–fcc cluster–cylindrical coexistence, liquid–cylindrical–lamellar coexistence,
and cylindrical–double gyroid–lamellar coexistence. The ccd (triangles) and the per-
colation line (lozenges) distinguish the gas from the cluster and percolated fluid
regimes in the disordered microphase range, respectively.

CONCLUSION

Despite the theoretical and algorithmic advances in the study of
microphase-forming models by molecular simulations, many chal-
lenges remain. As highlighted throughout the text, further methodological
developments are needed to efficiently simulate the disordered microphase
regime. Even simple frustrated lattice models obfuscate known cluster
algorithms. Simulating the periodic microphase regime of off-lattice models
also faces a number of hurdles. Relatively few such morphologies have
been considered thus far, and the high-density periodic microphase regime,
in which all domains percolate in all directions remains largely unexplored.
Enhanced sampling schemes for these phases could dramatically improve
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the simulation efficiency. More generally, only a few microphase-forming
models have been studied using careful, free energy-based molecular
simulations. The generality of our observations and the expectation of
physical universality have thus yet to be fully assessed.

Important questions about the assembly of microphases also remain to
be answered. If the attraction is very short-ranged, as in many colloidal
suspensions, how does the microphase morphology change? Recent
advances in complex particle synthesis also open the door for implementing
anisotropic competing interactions, which couple liquid–crystal ordering
with mesoscale patterns.181

Experimentally, periodic colloidal microphases are still missing. Many
possible explanations have been provided such as the complexity of actual
interaction potentials,75 but no resolution is obviously in sight. Fine-tuning
colloidal suspensions to allow the formation of periodic microphases thus
remains an open experimental problem.

3.A FREE ENERGY OF AN IDEAL GAS IN A FIELD

The density profile of an ideal gas in a field − (r) is

�̃�(r) = Ne𝛽 (r)

∫ e𝛽 (r)dr
= 𝜌Ve𝛽 (r)

z
[32]

Its free energy can thus be obtained by summing the ideal gas contribution

𝛽Fid = ∫ [�̃�(r) ln(Λ3
�̃�(r)) − 1]dr

= ∫
[
𝜌Ve𝛽 (r)

z
ln

(
Λ3 𝜌Ve𝛽 (r)

z

)
− 1

]
dr

= N
z

[
∫ e𝛽 (r) ln(Λ3

𝜌)dr − ∫ e𝛽 (r)dr + ∫ e𝛽 (r) ln
V
z

dr

+∫ e𝛽 (r)
𝛽 (r)dr

]
= N ln(Λ3

𝜌) − N − N ln
z
V

+ N𝛽

∫ e𝛽 (r) (r)dr

z

[33]
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to the field contribution to obtain the full free energy,

𝛽Fid = 𝛽Fid + 𝛽 ∫ �̃�(r)(− (r))dr

= N ln(Λ3
𝜌) − N − N ln

z
V

+ N𝛽

∫ e𝛽 (r) (r)dr

z
− 𝛽 ∫ �̃�(r) (r)dr

= N ln(Λ3
𝜌) − N − N ln

z
V

[34]
and hence the free energy per particle is

f id = 1
𝛽

[ln(Λ3
𝜌) − 1] − 1

𝛽

ln
z
V

= f id − 1
𝛽

ln
z
V

[35]

3.B CONSTANT PRESSURE SIMULATIONS OF PARTICLES IN
A FIELD

A couple of subtleties arise in constant pressure simulations of particles in
a field.

First, the field has to be set relative to the simulation box and changed
affinely with it. If the field were to be kept fixed while the box fluctuates,
energy would be dissipated as particles are driven by the box to move with
respect to the field.

Second, for 1D (e.g., lamellae periodic along z direction) and
two-dimensional (e.g., cylinders periodic in the xy plane) periodic
structures, a virtual harmonic potential U

𝛼
= 1

2
k
𝛼
(L

𝛼
− L

𝛼,0)2 with stiffness
k
𝛼

for 𝛼 ∈ {x, y, z} should be applied to the box length L
𝛼

around a targeted
value L

𝛼,0. Because the stress distribution is then spatially inhomogeneous
and anisotropic, the inter-domain spacing otherwise shrinks as the domains
grow along directions orthogonal to the compression direction. These
constraining springs ensure that the sampled configuration preserves the
targeted occupancy (periodicity) corresponding to L

𝛼,0, but do not affect
the TI, because the constraining potential, U

𝛼
, is not felt by particles.

3.C VIRIAL COEFFICIENTS OF PARTICLES IN A FIELD

Expressions for the first few virial coefficients of particles in a field can be
obtained as follows. First, recall that the grand canonical partition function
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can be expressed as

e𝛽pV = Ξ(T ,V , 𝜆) =
∑
N≥0

Q(T ,V ,N)𝜆N = 1 +
∑
N≥1

QN𝜆
N [36]

where 𝜆 = e𝛽𝜇 and

QN = Q(T ,V ,N) =
ZN

N!Λ3N
[37]

is the canonical partial function of N particles with configurational integral

ZN = ∫ drNe−𝛽UN (rN ) [38]

For particles with pairwise additive interactions, u(rij), under a field, − (r),
the total potential energy UN(rN) is

UN(rN) =
N∑

j>i

u(rij) −
N∑

i=1

 (ri). [39]

By series expansion and comparison of coefficients,127, 128 the second
and third virial coefficients are then

B2, (T) = − V

Q2
1

(
Q2 −

1
2

Q2
1

)
= − V

2Z2
1

(Z2 − Z2
1 )

B3, (T) = − V2

3Q3
1

[
(6Q3 − 6Q1Q2 + 2Q3

1) −
3

Q1
(2Q2 − Q2

1)
2

]

= − V2

3Z3
1

[
(Z3 − 3Z1Z2 + 2Z3

1 ) −
3
Z1

(Z2 − Z2
1 )

2

] [40]

For a potential energy of the form given in Eq. [39], and defining the
Mayer function f (r) = e−𝛽u(r) − 1, we get

Z1 = ∫ dre−𝛽U1(r) = ∫ dre𝛽 (r) = z

Z2 = ∬ dr1dr2e−𝛽U2(r1,r2) = ∬ dr1dr2e−𝛽u(r12)e𝛽 (r1)e𝛽 (r2)

= ∬ dr1dr2f (r12)e𝛽 (r1)e𝛽 (r2) +∬ dr1dr2e𝛽 (r1)e𝛽 (r2)

= ∬ dr1dr2f (r12)e𝛽 (r1)e𝛽 (r2) + z2

[41]
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and hence

B2, (T) = − V

2z2 ∬ dr1dr2f (r12)e𝛽 (r1)e𝛽 (r2) [42]

Similarly, from the definition for Z3,

Z3 = ∭ dr1dr2dr3e−𝛽U2(r1,r2,r3)

= ∭ dr1dr2dr3e−𝛽u(r12)e−𝛽u(r13)e−𝛽u(r23)e𝛽 (r1)e𝛽 (r2)e𝛽 (r3)
[43]

one gets

B3, (T) = − V2

3z3 ∭ dr1dr2dr3f (r12)f (r13)f (r23)e𝛽 (r1)e𝛽 (r2)e𝛽 (r3)

[44]
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INTRODUCTION

Sustainable solvents have attracted significant attention over the last three
decades for the synthesis of functional materials in energy conversion,
storage, and separation applications.1–5 For most applications, conventional
organic solvents and inorganic electrolytes have proven to be expensive,

∗These authors contributed equally to this work.

Reviews in Computational Chemistry, Volume 32, First Edition.
Edited by Abby L. Parrill and Kenny B. Lipkowitz.
© 2022 John Wiley & Sons, Inc. Published 2022 by John Wiley & Sons, Inc.



�

� �

�

136 REVIEWS IN COMPUTATIONAL CHEMISTRY, VOLUME 32

energy-intensive, sensitive to moisture, and produce toxic effects harming
the environment through formation of residual products and gaseous emis-
sions into the atmosphere.5–7 To address these shortcomings, significant
research efforts have focused on the development of green and sustainable
solvents.8–10 Deep eutectic solvents (DESs) have become attractive alterna-
tives, and an increasing research effort to understand the structure–property
relation in these solvents for diverse applications have grown since early
2000s.11–15 Many research studies have focused on the use of DESs as reac-
tion media for the synthesis of functional materials in electrocatalysis, fuel
cells, organic synthesis, biomass, and biodiesel purification.2, 16–18 DESs
have also been investigated as a possible alternative for CO2 scrubbing
applications such as aqueous amines, aqueous ammonia, and potassium
carbonate due to their biodegradability, low cost of production, and low
toxicity.19, 20 Other important applications of DES include liquid electrolyte
alternatives for photovoltaic devices and nanostructured sensors, metal
processing such as electrodeposition, metal extraction and processing of
metal oxides, and electropolishing.21–28

Several experimental and computational investigations have contributed
toward the understanding of their complex structure and interaction
between the constituents.13, 15, 29 Molecular simulations have played a
significant role in elucidating the intricacies present in DESs; in particular,
the effect of intermolecular interactions on the observed macroscopic
bulk properties.30–36 Simulations have also been performed on DES in
conjunction with other materials including metal surfaces, proteins, and
gas molecules with specific emphasis on the interaction between DES and
molecules/surfaces, interfacial properties, and gas sorption.37–39 Rather
than providing an overview of simulation studies performed to the date
this chapter was written on DESs, this review aims to accomplish three
goals: (1) Provide the essential background to a novice modeler on the
choice of simulation techniques used to model DESs, (2) Describe methods
used to obtain important physical, thermodynamic, transport, and structural
properties of bulk DES systems including an evaluation of the strengths
and drawbacks of the current simulation models, and (3) Discuss future
directions for simulating DES-based systems.

In section “Deep Eutectic Solvents”, the molecular structure and types
of DESs are described. Sections “Molecular Simulation Methods, Physi-
cal Properties, Thermodynamic Properties, Transport Properties, and Deep
Eutectic Solvent Structure” provide an overview of atomistic simulation
methods used to model DES systems with a discussion as to how physical,
thermodynamic, and transport properties are obtained from atomistic molec-
ular simulations. Finally, a summary of the overall performance of current
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simulation models is provided that highlights the strengths and drawbacks of
each method in representing the structure and properties of DESs. Potential
future directions for atomistic simulations of these unique solvent systems
are discussed.

DEEP EUTECTIC SOLVENTS

Definition of Deep Eutectic Solvents

The term “deep eutectic solvents” was coined from the decrease observed in
the melting temperature of a solvent mixture relative to the melting temper-
atures of the pure components prior to mixing. The eutectic temperature is
thus defined as the lowest melting temperature for a given mixture and the
corresponding composition is called the eutectic composition. DESs collec-
tively denote liquids that are close to this eutectic composition. These sol-
vents consist of large and asymmetric ions with low lattice energies. Abbott
et al.11 synthesized the first DES in 2001 by mixing metal chlorides (ZnCl2,
and/or SnCl2) and quaternary ammonium salts. DESs are usually obtained
by mixing a hydrogen bond acceptor (HBA) (such as quaternary ammonium
halide salts) with a hydrogen bond donor (HBD) molecule that has the ability
to form a complex with the halide, leading to a depression of the freezing
point of the resulting mixture. Figure 1 shows as an example the freezing
point curve of a DES system formed from a halide salt and a neutral organic
compound, namely, choline chloride (ChCl) and urea.40 The freezing point
is the lowest (12 ∘C) at 65 mol% urea than the freezing point of the original
constituents (ChCl = 302 ∘C and urea = 133 ∘C). In general, the freezing
point of most DESs are less than 150 ∘C.13, 41

DES as Ionic Liquid Analogues

The development of DESs by Abbott et al.11 originated from their efforts to
overcome the limitations associated with conventional imidazolium-based
room temperature ionic liquids (RTILs). For example, the high cost of RTILs
for bulk-scale applications and low-moisture stability associated with the
use of salts such as aluminum chloride led to replacements featuring the
combination of alternative metal chlorides with quaternary ammonium salts.
It was observed that low symmetry cations in general led to a decrease in the
freezing point, with ChCl showing the lowest freezing point among the sys-
tems tested. Subsequently, DESs based on ChCl and carboxylic acids were
also synthesized by Abbott et al. and were shown to exhibit a similar depres-
sion in the freezing point.42 These liquids share similar physical properties



�

� �

�

138 REVIEWS IN COMPUTATIONAL CHEMISTRY, VOLUME 32

350

300

250

200

T f
(°

C
)

150

100

50

0

0 20 40

mol % Urea

60 80 100

FIGURE 1 Freezing point of choline chloride (ChCl)-urea DES system as a
function of composition. Source: Abbott et al. 200340.

to RTILs, including high viscosity, large surface tension, low vapor pressure,
and nonflammability. Consequently, DESs are often termed as ionic liquid
(IL) analogues. Nevertheless, it is important to underscore the differences
between DESs and ionic liquids (ILs) with respect to the constituents and
molecular interactions that govern their unique properties. One of the impor-
tant differences between conventional ILs and DESs is that ILs are made
from discrete anions and cations, whereas DESs are synthesized by mix-
ing two components that form a eutectic mixture which typically consists of
cations, anions, and neutral organic compounds. The differences in the prop-
erties exhibited by DESs and ILs arise from the contribution of molecular
interactions from different components. While ionic interactions dominate
in ILs, molecular interactions have a significant contribution, starting from
hydrogen bonding interactions in DESs. Moreover, an ease of synthesis in
the pure state, moisture insensitivity, and biodegradability are some of the
more attractive properties that differentiate DESs from ILs. Figure 2 shows
an example of a DES system, reline, formed from ChCl and urea in a 1 : 2
ratio, respectively, where ChCl is the HBA and urea is the HBD. These
components form a eutectic mixture primarily due to contributions from a
network of hydrogen bonding interactions.



Choline chloride:Urea (1 : 2) Reline

FIGURE 2 Schematic showing choline chloride (ChCl) and urea mixed in the ratio 1 : 2, respectively, to form reline. Elements are
colored as carbon, oxygen, chloride, nitrogen, hydrogen. The dashed lines represent the formation of hydrogen bonds
between different pairs including Cl− and the hydrogen atom of the OH group in Ch+, and Cl− and hydrogen atoms present in urea.
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TABLE 1 Estimated Relative Contribution of Hydrogen Bonding Present in
CCEtg, CCU, CCGly, and CCMala.

DESb Choline–Cl Choline–HBD HBD–Cl HBD–HBD

CCEtg 0.15 0.05 0.57 0.23
CCU 0.08 0.08 0.32 0.52
CCGly 0.11 0.05 0.50 0.34
CCMal 0.30 0.05 0.51 0.14

aAveraging was performed over a 1 ns trajectory with 2 ps between each frame.
bSystem abbreviations are defined in Table 3.
Source: Adapted from Perkins et al. 201431.

Molecular Structure of DESs and Type of Interactions

The properties of DESs are controlled primarily by hydrogen bonding
between the different components of the mixture (cation and anion of
HBA, and the HBD species). However, appreciable contributions from
electrostatic interactions and van der Waals forces on some physical
properties such as viscosity have been reported.41, 43, 44 Figure 3 illustrates
DES formation through a potential complexation of the Cl− anion present in
ChCl with urea (HBD)33 and Table 1 shows the fraction of hydrogen bonds
in four ChCl-based DES systems studied by Perkins et al. through atomistic
molecular dynamics (MD) simulations.31 In three of the systems studied,
namely, ethaline, glyceline, and maline, the fraction of hydrogen bonding
interactions between the HBD and corresponding anion were found to be
the largest. However, in the reline system, the urea–urea interactions were
found to be significant. Despite the importance of intermolecular interac-
tions within DESs, quantitatively reproducing the molecular structure of
the systems has proven quite challenging for multiple simulation methods
including classical MD, ab initio MD (AIMD), first-principle MD (FPMD),
and mixed quantum and molecular mechanical (QM/MM) with deviations
reported for properties such as radial distribution functions (RDFs) and
hydrogen bonding behavior.34, 35, 45, 46

Earlier experimental and simulation studies have suggested that negative
charge delocalization plays a major role in decreasing the melting point of
the individual components, a consequence of hydrogen bonding between
the mixture components, especially between the halide ion and the HBD
moiety.47, 48 However, recent computational investigations based on ab ini-
tio and molecular mechanics (MM) calculations have shown that there are
complex interactions present rather than a simple charge delocalization. For
example, charge spreading in ChCl-based DES was investigated by Zahn
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et al.34 where it was found that hydrogen bonding enhances negative charge
spreading from the anion to the HBD, whereas the spreading of positive
charge is decreased. However, in the case of ChCl–urea systems, negligi-
ble charge spreading was found between the anion and HBD as a result of
increased hydrogen bonding between the Ch cation and the Cl anion as com-
pared to Ch–urea. Ashworth et al.33 also studied ChCl-urea as a model sys-
tem to understand double ionic hydrogen bond interactions and found that
urea forms a H-bonded complex with the cation, namely, urea[choline]+,
which has been shown to form the strongest H-bond identified between
the hydrogen atom of the hydroxyl group of Ch+ and the oxygen atom
of the urea molecule. This complex is energetically competitive with the
[Cl(urea)2]− complex, which has been associated with the eutectic behavior
observed in reline. The negative charge on the anion complex was found to
be localized. To summarize, recent investigations have challenged the ear-
lier explanation that negative charge delocalization between the HBD and
anion is a predominant factor in decreasing the melting point of the DES
mixture relative to the original components.

Types of DES

The general formula used to describe DESs is Cat+X−zY where Cat+

denotes the cation, which can be any ammonium, phosphonium, or sulfo-
nium cation, and X is a Lewis base, usually a halide ion such as Cl−. Based
on the complexing agent, DESs are commonly divided into four types as
described in Table 2.

Type I is analogous to the ILs formed using metal-halide/imidazolium
salts. The first DES synthesized by Abbott and coworkers11, 13 by mixing
quaternary ammonium salts and metal chloride salts belong to this cate-
gory. Type II DESs are formed by mixing hydrated metal halides and ChCl.
The inclusion of hydrated metal halides as one of the DES components is

TABLE 2 Classification of DES Based on the General Formula Cat+X−zY.

Type General formula

I Cat+X−zMClX, M = Zn, Sn, Fe, Al, Ga
II Cat+X−zMClX⋅yH2O, M = Cr, Co, Cu, Ni, Fe
III Cat+X−zRZ, Z = CONH2, COOH, OH
IV MClx +RZ = MClx−1

+⋅RZ+MClx+1
−, M = Al, Zn and Z = CONH2, OH

Source: Adapted from Smith et al. 201413.



�

� �

�

MOLECULAR SIMULATIONS OF DEEP EUTECTIC SOLVENTS 143

TABLE 3 Deep Eutectic Solvents Composed of Choline Chloride (ChCl) and a
Hydrogen Bond Donor (HBD) at Specific Ratios (e.g., ChCl:HBD of 1 : 1, 1 : 2,
1 : 3).

Abbreviation HBD Name

CCEtg Ethylene glycol Ethaline
CCGly Glycerol Glyceline
CCLev Levulinic acid —
CCMal Malonic acid Maline
CCOx Oxalic acid Oxaline
CCPhe Phenol —
CCPro Propylene glycol Propeline
CCU Urea Reline

promising for large-scale production due to lower costs and their ability to
withstand moisture.13 Following their initial work on metal chloride salts,
Abbott et al.40, 42 synthesized DESs based on quaternary ammonium salts
and molecular HBDs such as urea, alcohols, and carboxylic acids giving
rise to type III DESs. DESs formed from inorganic cations constitute type
IV eutectics. Transition metal halides such as ZnCl2 have been able to form
eutectics with HBDs such as urea, ethylene glycol, and acetamide.49

Type III DESs are one of the most commonly investigated classes,
both experimentally and computationally, as they comprise eutec-
tic mixtures formed from a variety of halide salts and neutral HBDs
(Figure 4). Type III DESs based on ChCl have been of particular interest
to researchers due to several advantages that include simple and versatile
preparation from relatively inexpensive components, low toxicity, and
biodegradability.13, 31, 34, 41, 42, 50–53 Additionally, they have enabled the
study of the interactions between the ChCl cation and HBDs, and the effects
of molecular interactions on bulk-phase thermodynamic and transport
properties in general. Table 3 summarizes the names and composition of
the most frequently used type III DESs; for consistency, the DES solvents
will be referred to by their abbreviations for the remainder of this chapter.

MOLECULAR SIMULATION METHODS

The first molecular simulation investigations of DESs were performed in
2013,31, 54, 55 a decade after DESs were first discovered by Abbott et al.11, 40
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Molecular simulations have played a crucial role in conjunction with exper-
imental investigations in elucidating the structure–property relationships of
DESs. Simulation techniques capable of examining different time scales
may be necessary depending on the specific property being investigated. In
general, simulation studies in the DES field have focused on: (1) understand-
ing negative charge delocalization and charge spreading in DES species to
rationalize the lowering of melting temperatures; (2) unravelling complex
interactions between different components in the systems (cations, anions,
and HBDs) that include contributions from hydrogen bonding and electro-
static interactions, e.g., doubly ionic bonds in different DES systems; and (3)
simulating thermodynamic, physical, and transport properties in bulk-phase
DES systems.20, 37–39, 56 There has also been an increasing number of simu-
lation studies for DES systems in combination with gases, solid interfaces,
mixtures, and biomolecules.20, 37–39 This chapter describes efforts to repro-
duce thermodynamic, physical, and structural properties of bulk-phase DES
systems using atomistic MD simulations, while also underscoring impor-
tant conclusions made by ab initio methods. In section “An Overview of Ab
Initio Methods”, a brief overview of the ab initio investigations that have
played an important role in understanding the molecular structure of DES is
provided. Section “Classical Molecular Dynamics at the Atomic Level” dis-
cusses atomistic MD simulation methods and section “Nonpolarizable Force
Fields Used for DES Simulations” provides a description of nonpolarizable
FFs used for DES simulations.

An Overview of Ab Initio Methods

One of the major thrust areas of ab initio investigations on DESs has been
to provide a physical explanation for the observed low melting point in
these systems and its effects on their physicochemical properties. García
et al.57 studied the melting points of ChCl based DESs, where 29 HBDs
were optimized at the B3LYP/6-31+G(d) level of theory. The quantitative
structure–activity relationship methodology was then utilized to develop a
model using a genetic function approximation. Later, similar methods were
employed by the same research group30 to rationalize potential correlations
between the melting temperatures and the molecular structure for 45
different DES systems, mostly based on choline. A combination of density
functional theory (DFT) and a topological analysis of electron density was
employed to better understand intermolecular interactions, particularly for
hydrogen bonding networks and their effect on the melting point of DESs.
Functionals used to perform DFT calculations for DESs must account
for dispersion forces given their importance in accurately describing



�

� �

�

146 REVIEWS IN COMPUTATIONAL CHEMISTRY, VOLUME 32

long-range interactions for these ionic solvents.58–61 For example, the DFT
investigation by García et al.30 used the B3LYP functional with Grimme’s
scheme62 that accounts for dispersion corrections (B3LYP-D2). Figure 5
provides B3YLP-D2/6-31+G(d,p) optimized structures for four selected
DESs with the intermolecular hydrogen-bonded network represented by
dotted lines and the Bader cage critical points by points labeled “cp”.
Cage-like structures were formed by the HBD-chloride hydrogen-bonded
interactions and the HBD-cation and anion–cation interactions. This
work represents one of the first contributions toward understanding the
correlation between macroscopic properties, such as the experimentally
observed lowering of melting points, and the molecular structure in terms
of hydrogen bond networks.

Wagle et al. also performed DFT calculations to study the mobility
of different components in CCGly, in conjunction with quasielastic
neutron scattering coupled with selective deuteration.63 In this work, the
M06-2X/6-31++G(d,p) level of theory was applied to study the local dif-
fusion dynamics of glyceline’s components. The M06-2X DFT functional
was chosen as it has been reported to provide accurate descriptions of
non-covalent interactions including dispersion effects.64–66 The calculations
provided a physical explanation, i.e., the competitive nature of hydrogen
bonding, for the observed higher local diffusion dynamics of Ch+ as
compared to glycerol in CCGly (Figure 6). This contrasted with to the
observed slower long-range diffusion dynamics of Ch+ in comparison to
Cl−. Further ab initio calculations were performed on CCU, CCEtg, and
CCMal.67 Initial geometry optimizations and a subsequent reoptimization
were done at the HF/6-311G(d,p) and M06-2X/6-31++G(d,p) levels,
respectively. The DES species displayed a cage-like nanostructure due
to cooperative H-bonding between HBDs, cations, and anions. A charge
distribution analysis indicated higher charge transfer from Ch+ to the HBD
as compared to that occurring from Cl– to the HBD. The calculated sum
of bond orders for Ch−Cl interactions correlated directly with the melting
point of the DESs.

Zahn et al.34 were the first to perform ab initio MD calculations to
study charge spreading in the liquid state for CCU, CCGly, and CCOx.
The Hirshfield-I partial charge analysis method, previously used for ionic
systems,68 was applied and it was found that increasing hydrogen bond
interactions between the anion and the HBD compound increased the neg-
ative charge spreading to the HBD with a reduction of the positive charge
spreading for CCGly and CCOx. In contrast, negative charge spreading
was negligible on CCU. The results obtained from this study challenged
the commonly held notion that negative charge delocalization occurring
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FIGURE 6 Ab initio calculations showing hydrogen bonds formed between
glycerol molecules and chloride dominate over the ones occurring between the
choline cation and chloride. Source: Wagle et al. 201563.

between anion and HBD in DESs was responsible for the observed lowering
of their melting points. Follow-up studies further investigated the molecular
structure and hydrogen bond dynamics of CCU,69 alkali halide crystals,70

and doubly ionic bonds.33

To summarize, ab initio simulations have provided a detailed description
of the molecular structure of DESs that illustrate the complex nature of com-
ponent interactions arising from hydrogen bond networks and electrostatic
contributions. The charge transfer processes between the cation, anion, and
HBD were examined for several ChCl-based DESs. The majority of these
investigations have focused on unravelling the effect of molecular interac-
tions on the “deep eutectic” behavior, i.e., a decrease in melting point near
the eutectic composition. However, given the large computational cost of
these ab initio methods in terms of both the time and computer resources
required, the expansion of the QM-based methods toward large bulk-phase
DES simulations is not feasible at present. Therefore, exploration of existing
bulk-phase DES thermodynamic and transport properties and the design of
new DES solvents for specific applications necessitates the use of molecular
mechanics-based force fields. The subsequent sections provide a description
of classical molecular dynamics (MD) simulation methods used to model
larger sized, e.g., hundreds to thousands of ionic/molecular components,
DES systems.
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Classical Molecular Dynamics at the Atomic Level

Classical MD simulations that obey Newton’s laws of motion use force
fields (FFs) to calculate the potential energy of a system as a function of
their atomic coordinates. The choice of FF plays an important role in the
prediction of properties from atomistic molecular simulations and must be
chosen carefully depending on the type of system to model. Generalized
FFs like GAFF71 and DREIDING72 can offer qualitative and quantitative
information complementing experimental results for a wide range of small
molecule and macromolecular systems. However, the application of these
FFs to charged solvents such as ILs and DESs necessitates further refine-
ment and development of new parameter sets to obtain good agreement
with experimental data. To reproduce and predict thermodynamic, trans-
port, and structural properties of DESs, it is important that the FF chosen
accurately reproduces the molecular geometry, nonbonded interactions, and
properly samples the conformational space of these systems. Therefore, any
molecular simulations involving a new DES system must involve a thorough
validation of the FF selected to provide confidence in the predictive results
obtained for the properties of interest.

The majority of the DES simulation studies have used FFs such
as GAFF71 and OPLS-AA,73–77 which follow the general “class I”
equation [1], with the exception of molecular simulations of CCU32, 78

that have employed the Merck molecular force field (MMFF),79–81 a class
II FF. The potential energy, U(r), in Eq. [1] is represented as the sum
of bonded and nonbonded interactions present in a system. The bonded
interactions typically comprise Ubond, Uangle, Udihedral, and Uimproper terms
as described in Eqs. [2]–[5]. The bond stretch interaction is described by
a simple harmonic oscillator between atoms i and j as shown in Eq. [2a].
Kb

ij denotes the force constant, rij represents the distance between atoms i

and j, and r0
ij represents the equilibrium bond length. Similarly, Uangle can

be represented as a harmonic term (Uangle,h as described in Eq. [3a]) where
K𝜃

ijk, 𝜃ijk, and 𝜃
0
ijk represent the angle force constant, angle between atoms

i, j, and k, and equilibrium angle, respectively. A dihedral energy term is
typically expressed as a cosine series as given by Eq. 4, where Vn represents
the “barrier height,” n is the periodicity of the potential and 𝛾 is the phase
angle. Energy contribution from impropers, or out of plane bending, can
also be taken explicitly into account, as given by Eq. 5 where K

𝜔
is the

force constant and 𝜔ijk–𝜔0
jkl is the out of the plane angle. Impropers can be

also implemented using the Wilson wag that is the i–l bond angle with the
j–k–l plane. Class II FFs such as COMPASS,82 PCFF,83 and MMFF79–81

contain higher order force constants (typically cubic and quartic) for bond
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and angle terms, and also contain off-diagonal cross-coupling terms such
as stretch–bend and bend–bend interactions. For example, in the case of
MMFF, cubic-stretch and bend terms are used as shown in Eqs. [2b] and
[3b] where K′b

ij and K′𝜃
ijk are cubic-stretch and cubic-bend constants. Also,

a stretch–bend cross-term is included as given in Eq. [6], where Ksb
ijk and

Ksb
kji are the force constants for i–j and k–j stretching coupled to i–j–k

bending, rij and rkj represent the bond lengths between atoms i–j and j–k,
and 𝜃ijk denotes the angle between i–j–k atoms.

U(r) = Ubond+Uangle+Udihedral+Uimproper+Uvan der Waals+Uelectrostatics

[1]

Ubond,h = Kb
ij(rij − r0

ij)
2 [2a]

Ubond,q = 143.9325K′b
ij ∕2(rij − r0

ij)
(

1 + cs(rij − r0
ij) +

7
12

(cs2(rij − r0
ij)

2)
)

[2b]

Uangle,h = K𝜃

ijk(𝜃ijk − 𝜃
0
ijk)

2 [3a]

Uangle,c = 0.043844K′𝜃
ijk∕2(𝜃ijk − 𝜃

0
ijk)

2(1 + cb(𝜃ijk − 𝜃
0
ijk)) [3b]

Udihedral =
∑

dihedrals

1
2

Vn(1 + cos(n𝜙 − 𝛾)) [4]

Uimproper = 0.043844K
𝜔
∕2(𝜔ijk − 𝜔

0
jkl)

2 [5]

Ustretch−bond = 2.51210(Ksb
ijk(rij − r0

ij) + Ksb
kji(rkj − r0

kj))(𝜃ijk − 𝜃
0
ijk) [6]

Nonbonded interactions are composed of van der Waals and electrostatic
interactions. The electrostatic energy contribution is computed from the
interactions between fixed partial charges in the case of nonpolarizable FFs
as given by Eq. [7]. The weak dispersive or van der Waals interactions are
typically represented with a 12-6 Lennard-Jones (LJ) potential, but 9-6
and buffered 14-7 LJ potentials can also be used. ULJ in Eq. 8a represents
the van der Waals energy contribution, where m and n values equal, for
example, 12 and 6 or 9 and 6. 𝜀ij and 𝜎 represent the potential well depth
and collision diameter, respectively. UvdW (Eq. 8b) is another form of the
van der Waals term where a buffered 14-7 potential, as used in MMFF, is



�

� �

�

MOLECULAR SIMULATIONS OF DEEP EUTECTIC SOLVENTS 151

shown. The minimum interaction energy distance between atoms i and j is
given by rij (or Rij).

Ucoul =
qiqj

4𝜋𝜀0rij
[7]

ULJ = 4𝜀ij

[(
𝜎

rij

)m

−
(
𝜎

rij

)n]
[8a]

UvdW = 𝜀ij

(
1.07R∗

ij

Rij + 0.07R∗
ij

)7 ( 1.12R∗7
ij

R7
ij + 0.12R∗7

ij

− 2

)
[8b]

In charged systems, such as DESs and ILs, tuning nonbonded parameters
plays an important role in treating polarization implicitly to obtain better
agreement with experimental data. The approaches used for implicit treat-
ment for polarization include (1) scaling ionic charges and/or (2) adjusting
LJ parameters. One of the earliest investigations to utilize scaled charges was
performed by Morrow and Maginn, where overall cation and anion charges
of +0.904 e and –0.904 e (as opposed to integer ±1 e values) were used
for the 1-butyl-3-methylimidazolium hexafluorophosphate [bmim]+[PF6]–

IL.84 The charges on the fluorine atoms in the anion were found to be asym-
metric, which implied polarization of the electron cloud. However, it was
found that the anion did not show a preferential orientation close to the near-
est cation. In addition, the computed properties did not show a significant
difference when using symmetric charges on the anion. Following this work,
there were two simulation studies of aqueous-IL interfaces where scaled
charges showed better results in terms of interface formation and agreement
with experimental values of ILs in humid conditions.85, 86 Refined potentials
for [bmim]+[PF6]− IL by Bhargava and Balasubramanian87 used charges of
±0.8 e and tuned LJ parameters to match the RDFs obtained from ab ini-
tio simulations using the Car–Parrinello method. In particular, the emphasis
was to reproduce the cation–anion H-bonding behavior. Liu et al. calcu-
lated a range of properties including density, heat capacity, thermal con-
ductivity, shear viscosity, and self-diffusion coefficients for six ILs using
GAFF parameters with scaled charges (±0.8 e).88 Although other properties
showed good agreement, shear viscosities were overestimated by an order
of magnitude and self-diffusion coefficients were underestimated by a fac-
tor of 2 which has been attributed to the lack of treating polarizability in an
explicit way. Consequently, a systematic investigation of different charge
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TABLE 4 Evaluation of Different Charge Schemes for ChCl–levulinic Acid DES
Employing Isolated Molecule and Cluster Approach.

Charge assignment method Cluster Isolated molecule

Mulliken Poor Poor
NPA Fair Poor
Löwdin Poor Poor
Mayer Poor Poor
ChelpG Good Fair
Merz–Kollman Good Fair
Atomic Polar Tensor Fair Poor
Hirshfeld Fair Poor
Voronoi deformation density Poor Poor
AIM Fair Poor

Source: García et al. 201594.

scaling factors was completed by Chaban, where an overall scaling factor
between 0.7 and 0.8 worked best for imidazolium and pyridinium RTILs.89

More recent studies have thoroughly investigated the use, advantages, and
disadvantages of employing scaled charges in ILs.90–92

Multiple molecular simulations of DESs have also utilized effective
charge scaling to treat polarization implicitly. It is important to note that the
choice of charge method, e.g., RESP, ChelpG, AIM, and Merz–Kollman,
used during the development of FF partial charges can have a dramatic
influence on the accuracy of IL and DES systems.93, 94 In addition, the devel-
opment of atomic charges from either (1) clusters consisting of a 1 : 2 mole
ratio, e.g., 1 ChCl and 2 urea in CCU, or (2) isolated molecules/ions can
also have a profound effect on the predicted structural arrangement of the
system.94 Table 4 provides a comparison between different charge models
and the use of small clusters versus individual molecules/ions. Overall, the
ChelpG and Merz–Kollman charge models coupled to the minimal cluster
optimization approach yielded the most accurate reproduction of DES
properties. Similar to the IL simulations discussed previously, non-integer
charges provided the best results, i.e., charges on Ch+ and Cl– obtained
from ChelpG were +0.8254 e and −0.8392 e, while the Merz–Kollman
charges were +0.6849 e and −0.7158 e, respectively.94 In addition, Ullah
et al. reported a FF for CCLev that possessed non-integer cation and anion
ChelpG-derived charges of +0.8254 e and −0.6849 e.37

Tuning of the van der Waals terms for better agreement in structural,
thermodynamic, and transport properties in MD simulations has not been
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employed as extensively in DES simulations as compared to ILs.95 Notably,
Doherty and Acevedo adjusted LJ parameters and empirical charges during
the development of an OPLS-AA force field for ChCl-based DES systems35

to match RDFs reported by Hammond et al.46 A potential drawback of this
procedure is the transferability of these parameters to simulations featuring
complex systems, e.g., additional species or heterogeneous environments.
In the case of DES mixtures, even if one of the cationic/anionic species are
common to both components, the chemical environment around the con-
stituent atoms can lead to different charge descriptions.96 This emphasizes
that in the event of mixing DES systems, or simulating DESs with organic
solvents or polymers, scaling of charges and FF parameters in general should
be validated prior to the prediction of properties of interest.

Simulations featuring mixtures of DESs and conventional solvents have
been reported but are limited in number. For example, Tanner et al. stud-
ied the effect of water addition to ILs composed of choline and geranate
at varying mole fractions using a combined experimental, atomistic MD,
and coarse-grained MD approach.97 Fetisov et al.45 also performed a FPMD
study between CCU and water to study the resultant molecular structure and
transport properties for the mixture. Table 5 summarizes the nonpolarizable
FFs, with implicit treatment of polarization, used to simulate DES systems
through charge scaling and/or LJ tuning and is discussed in greater detail in
section “Nonpolarizable Force Fields Used for DES Simulations”.

Nonpolarizable Force Fields used for DES Simulations

A variety of nonpolarizable FFs have been used to study DESs. For
example, Perkins et al.55 performed molecular simulations on CCU with
modified GAFF parameters at several temperatures. Good agreement with
experimental densities (1% error) and heat capacities (1.3−1.4% error) was
found with a reduced charge model (±0.8 e). However, transport properties
such as self-diffusion coefficients were underestimated by 25−51% and
29−41% for Ch+ and urea at 298 K, respectively. Improvement was seen
at the higher temperature of 330 K, which reduced the errors to 4−17%
and 3−8% for the same species in comparison with experimental values.
Subsequent work by the same group31 on CCEtg, CCGly, and CCMal
also showed good agreement for physical and thermodynamic properties.
Once again, the self-diffusion coefficients were difficult to reproduce for
CCEtg where values were underestimated by 20−30% at 298 K and 5−25%
for simulations at 330 K. For CCGly, the values were underestimated by
14−20% and 17−27% at 298 and 330 K, respectively.



TABLE 5 Comparison of DES Bulk Properties from Atomistic MD Simulations using Nonpolarizable Force Fields.

Author/force field
Liquid
density

Thermal
expansion
coefficient

Surface
tension

Heat
capacity Viscosity

Self-
diffusion

coefficients
Liquid

structurea

CCU

Perkins et al.55 GAFF (0.8)b ++c ++ na ++ na —d +
Doherty and Acevedo35 OPLS-AA (0.8) ++ na ++ + ++ — ++
Shah and Mjalli78 MMFF ++ ++ na na na —— +
García et al.20 MDynaMix ++ na Na na — na +

CCEtg

Perkins et al.31 GAFF (0.8) ++ + na + na — +
Zhang et al.36 GAFF(0.9) ++ na na na + — ++
Doherty and Acevedo35 OPLS-AA (0.8) ++ na ++ ++ ++ — ++
Ferreira et al.98 Mixede ++ + + na + — +

CCGly

Perkins et al.31 GAFF (0.8) ++ ++ na + na — +
Doherty and Acevedo35 OPLS-AA (0.8) ++ na ++ + ++ — ++
Mainberger et al.32 MMFF ++ na na ++ na —— +
García et al.20 MDynaMix ++ na na na — na ++

CCMal

Perkins et al.31 GAFF (0.8) ++ + na na na na +
Doherty and Acevedo35 OPLS-AA (0.8) ++ na ++ na ++ na +
García et al.20 MDynaMix ++ na na na — na ++



TABLE 5 (Continued)

Author/force field
Liquid
density

Thermal
expansion
coefficient

Surface
tension

Heat
capacity Viscosity

Self-
diffusion

coefficients
Liquid

structurea

CCLev

Ullah et al.37 MDynaMix ++ ++ na na — na ++
Doherty and Acevedo35 OPLS-AA (0.8) ++ na na na ++ na +
Mainberger et al.32 MMFF ++ na na na na na +
Mainberger et al.32 GAFF (0.75) ++ na na na na na +

CCPro

Ferreira et al.99 OPLS-AA ++ na na na —— —— +
aLiquid structure was compared considering the breadth of properties calculated (RDFs, CDFs, SDFs, H-bond analysis, and intermolecular energies) and
comparison with ab initio simulations or neutron diffraction data.
bValues in parentheses 0.75, 0.8, and 0.9 indicate charge scaling factor in the given FF.
c+ and ++ denote reasonable and good agreement with experimental data (deviations <10% and <5%, respectively).
d— and —— denote deviations >10% and >20%, respectively.
eMixed – GAFF, OPLS-AA, and CHARMM27 were used for Ch+, Cl−, and ethylene glycol, respectively.
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Ferreira et al.98 tested various FF combinations for each component
in CCEtg including OPLS-AA,75, 77 GAFF,71 and CHARMM27100, 101

with varying charge schemes. Although they obtained good agreement
for densities and thermal expansion coefficients using the unscaled charge
scheme (±1e), self-diffusion coefficients of Ch+ and ethylene glycol were
found to be underestimated by a factor of 8 when compared against experi-
mental values. After scaling the charges by a factor of 0.8, several properties
including density, thermal expansion coefficient, enthalpy of vaporization,
surface tension, shear viscosity, and structural properties were calculated
over a temperature range of 298.15−373.15 K and compared to relevant
experimental data. It was reported in this work that the self-diffusion
coefficients displayed an improvement of 10% with the refined charges in
comparison to the Perkins et al. simulations.31, 55 Ferreira et al.99 applied
the same procedure to derive a system-specific FF for CCPro. The authors
found success in reproducing experimental densities while combining
existing parameters for choline,75 chloride,76 and propylene glycol.102

Further refinement was achieved through AIMD simulations of the CCPro
system and the restrained electrostatic charge potential (RESP) was utilized
to generate new averaged charges on each species. With the newly produced
charges, transport properties such as viscosity and diffusion coefficients
were improved compared to experiment, and however, the errors associated
with each property were still large at 19% and 16%, respectively.

Using the empirical potential structure refinement (EPSR) method that
validates the sampling space to neutron diffraction data, Hammond et al.46

generated center-of-mass and partial atomic RDFs for CCU along with spa-
tial distribution functions (SDFs) to characterize the solvation environment.
To run the refinement simulations, harmonic potentials were used to main-
tain the geometry for each molecule of interest. A reference potential was
either obtained from literature or generated to explore the desired configu-
rational space. The parameters for urea molecules were derived from Soper
et al.103 and OPLS-AA parameters were used for Ch+ and Cl−. The study
found a complex H-bonding network consisting of strong HBD (urea)–Cl
and Ch–Cl interactions, consistent with other experimental and simulation
investigations. Besides being the first work to examine the liquid structure
of CCU using neutron diffraction, this work also provided a framework for
refining existing atomistic FFs to simulate Ch–Cl DES systems.35

Mainberger et al.32 tested two FFs, GAFF and MMFF, to simulate three
ChCl-based DESs containing the HBDs of glycerol, 1,4-butanediol, and lev-
ulinic acid. An additional DES containing the zwitterion betaine was also
investigated. Two sets of charges derived by the RESP methodology were
used with GAFF to investigate the effect of charge scaling. Scaling atomic
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charges by 0.75 improved estimation of densities and heat capacities in com-
parison with experimental data for all systems. However, for the CCGly
system where experimental self-diffusion coefficients are available, the pre-
dicted values were overestimated by an order of magnitude. The ±1 charge
system underestimated the diffusion coefficients by 16% and 7% for glyc-
erol and Ch+, respectively. Simulations with the MMFF did not utilize a
charge scaling scheme, but still showed good agreement for densities and
heat capacities (within ∼3% of experimental values). However, the calcu-
lated self-diffusion coefficients for Ch+ and glycerol were underestimated
by 43% and 92%, respectively.

Doherty and Acevedo35 recently developed a set of custom OPLS-AA
parameters (called OPLS-DES) to simulate the structural, thermodynamic,
and transport properties of ChCl-based DESs. The nonbonded parameters
for Ch+ and Cl− were adjusted to match the RDFs obtained from the
work of Hammond et al.,46 and Zahn et al.34, 46 Torsional parameters
for the Ch cation were originally adjusted in a previous IL study to fit
conformational energy minima from LMP2/cc-pVTZ(-f) calculations.75

For the HBDs, parameters were taken from OPLS-AA77 and nonbonded
terms were adjusted to match liquid structure and bulk properties from
experimental data and AIMD based calculations.34, 46, 69 Physical and
thermodynamic properties such as density, shear viscosity, heat capacities,
and surface tension showed excellent agreement with experimental data
while self-diffusion coefficients showed higher error percentages. The
overall mean absolute errors (MAEs) obtained in this work were 1.1%,
1.6%, 5.5%, and 1.5% for the above-mentioned properties, respectively.
Self-diffusion coefficients estimated in this work showed error percentages
of 31.4% and 78.8% for Ch+ and urea at 298 K. The percent error values
decrease with temperature (28.1% and 0.3%, respectively, at 328 K) similar
to the behavior observed in other simulation investigations.31, 55, 98 In recent
simulations performed by Salehi et al.,104 the OPLS-AA parameters from
Doherty and Acevedo35 and GAFF parameters from Perkins et al.31, 55

were used to calculate Hildebrand and Hansen solubility parameters for
CCU, CCGly, CCMal, and CCOx. A charge scaling of 0.8 was applied
to the simulated systems for both FFs tested. Additional modifications
included the removal of intramolecular exclusion terms between hydrogen
and oxygen atoms in OH groups of the HBDs and the inclusion of LJ
parameters (𝜎 = 0.1 Å and 𝜀 = 0.001 kcal/mol) for hydrogen atoms to
avoid overlaps. Solubility parameters and enthalpies of vaporization were
computed taking into consideration HBD, HBA, and cluster (comprising
both HBD and HBA) vaporization. Based on the calculated vaporization
enthalpy contributions, the HBD is suggested to vaporize first and the
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large values similar to ILs emphasize the polar nature of DESs. As a
brief comparison between the GAFF and OPLS-AA parameter sets, in
CCU, GAFF overestimated the experimental enthalpies of vaporization by
25 kJ/mol, whereas OPLS-AA showed close agreement.

Beyond generalized FFs that have been modified to simulate DESs,
e.g., GAFF and OPLS-AA, additional work has been reported for FFs
parameterized specifically to simulate DES systems.20, 37, 94 For example,
parameterization efforts on CCU, CCGly, and CCMal by García et al.20

developed partial charges by using a minimal cluster approach, where
ChCl:HBD clusters (in the ratio 1 : 1, 1 : 2, and 1 : 2 for malonic
acid, ethylene glycol, and urea, respectively) were optimized at the
B3LYP/6-311+G(d) theory level. Their DFT calculations showed different
charge distributions for two urea/ethylene glycol molecules depending
on the positions through which the two atoms interact with ChCl. Thus,
the two urea/ethylene glycol molecules were assigned different charges.
The parameterization effort reported liquid density deviations of 1.68%,
0.29%, and 1.56% for CCU, CCGly, and CCMal, respectively; however,
viscosities obtained from these simulations showed large deviations. A
similar parametrization procedure was followed by Ullah et al.37 for
CCLev where two types of levulinic acid molecules were developed with
different ChelpG-based charges. This work showed good agreement with
experimental data for density and thermal expansion coefficients (less than
0.8% and 2.8%, respectively) but gave poor shear viscosity reproduction
with a deviation of 16.8% compared to the experiment. Experimental
data were not available to compare self-diffusion coefficients for CCLev;
however, their predictions were comparable to GAFF simulations with no
charge scaling.32

Table 5 provides a summary of bulk properties and liquid structures
predicted using the previously discussed nonpolarizable FFs developed for
DES systems. Liquid density and thermal expansion coefficient predictions
of multiple DES systems showed good agreement with experimental data for
all the FFs mentioned in Table 5. In particular, liquid density shows less than
3% deviation from experiments with the exception of CCU (OPLS-AA)35

with 4.0% at 298 K. This has been attributed to the scaling of LJ parameters
to reproduce other properties such as heat capacity, surface tension, and
molecular interactions. Viscosities calculated by García et al.20 and Ullah
et al.37 using the Green–Kubo method showed higher error percentages
(ranging from 16.8% to 35.4%) as compared to the nonequilibrium periodic
perturbation method,35, 98 where error percentages are less than 3%. Surface
tension for most systems have only been calculated by OPLS-AA with <2%
deviations from experimental data.35 For CCEtg, OPLS-AA parametrized
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by Doherty and Acevedo35 displayed better performance than surface
tensions computed using a combination of multiple FF parameters, i.e.,
GAFF (Ch+)+OPLS-AA(Cl−)+CHARMM27(ethylene glycol).98 All
nonpolarizable FFs showed large deviations in self-diffusion coefficients
at 298 K compared to experimental data (typically >15%, but as high as
>50% in several cases). During the development of the nonpolarizable DES
FFs, the predicted molecular structures and intermolecular interactions of
the solvents were often compared to relevant QM-based calculations and
experimental data. For example, the local interactions in CCU predicted
by OPLS-AA-based simulations35 were extensively characterized by
examining combined distribution functions (CDFs), RDFs, and SDFs, and
comparing them in detail to reported AIMD simulations.34 Additional
liquid structure properties, such as H-bond residence times, were calculated
by García and coworkers.20, 37 Detailed comparisons of physical, thermody-
namic, and transport properties, and molecular structure and interactions are
provided in the subsequent sections “Physical Properties, Thermodynamic
Properties, Transport Properties, and Deep Eutectic Solvent Structure”.

From Table 5, it is clear that accurately reproducing transport properties,
such as self-diffusion coefficients, was a challenge for all parameterization
efforts. The use of polarizable force fields has been advocated for improving
agreement with diffusivity experimental data.35 However, to our knowledge,
polarizable FFs have not been developed/utilized to simulate bulk properties
of DES systems.

PHYSICAL PROPERTIES

Liquid Density

Liquid density is an important physical property that has served as
a starting point for the validation of DES FFs at a wide range of
temperatures.31, 32, 35, 55 It should be noted that density by itself is not
sufficient for validating the accuracy of a FF as multiple combinations
of parameters can give similar densities within error bars while showing
remarkable differences in other predicted thermodynamic, structural, and
transport properties. Problematically, experimental solvent characterization
data, such as cohesive energy and enthalpy of vaporization, are not readily
available for DES systems.104 Hence, liquid densities have been used
for preliminary validation in the literature. Densities obtained from MD
simulations have been compared against experimental data32, 44, 105–115 for
(a) CCU, (b) CCEtg, (c) CCGly, (d) CCMal, and (e) CCLev in Figure 7.
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FIGURE 7 Comparison of liquid density data obtained from simulations (solid
symbols) and experimental data (half-open symbols) for (a) CCU, (b) CCEtg, (c)
CCGly (d) CCMal, and (e) CCLev. Simulations: ◾ Perkins, Painter, and Colina31, 55

▾ Doherty and Acevedo35 ▴ Shah and Mjalli78 • Ferreira et al.98 ⧫ García, Atilhan,
and Aparicio20 ▸Mainberger et al. (MMFF)32 ◂Mainberger et al. (GAFF)32 ★Ullah
et al.37 Experimental: ◽ Ciocirlan et al.115 ⚬ D’Agostino et al.44 + Yadav et al.111, 116

× Leron and Li106 ▵ Shekaari, Zafarani-Moattar, and Mohammadi112 ⊳ Xie et al.108

▿ Abbott et al.117 ⋄ Chemat et al.109 ⎔ Shahbaz et al.105 ⬠ Mjalli et al.114 ⊲ Mjalli
and Abdel Jabbar113 ◮ Leron, Wong, and Li107

⊗ Mainberger et al.32 ◭ Florindo
et al.110
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A major caveat is that large deviations are prevalent between the reported
experimental densities themselves. These differences have been attributed
to several factors that include water absorption by samples and the method
of measurement.41, 55, 118

For CCU (Figure 7a), MD simulations by Shah and Mjalli that uti-
lized MMFF showed the closest agreement with experimental densities
across a temperature range of 290−330 K.78 Reasonably close agreement
(≤1%) was also found when using GAFF.55 However, the OPLS-AA
underestimated liquid densities with errors ranging from 3.9−4.2%; this
was a consequence of scaling Lennard-Jones parameters to obtain better
agreement with other properties that included surface tension, heat capacity,
and molecular structure at the expense of increased deviations in density.35

For CCEtg (Figure 7b), GAFF, OPLS-AA, and a mixture of param-
eters (GAFF(choline)+OPLS-AA(chloride)+CHARMM27(ethylene
glycol))98 all exhibited good agreement with less than 3% deviation
from experimental densities. As a general comparison, GAFF and the
mixed parameters underestimated the experimental densities, whereas the
OPLS-AA overestimated the values. However, the maximum absolute
error for all FF predictions of CCEtg were usually <0.01 g/cm3. Density
simulations of CCGly (Figure 7c) reported deviations of less than 1.1%
with experiment when utilizing either the GAFF (Perkins, Painter, and
Colina31) or OPLS-AA35 FFs. However, parameters from Mainberger
et al.32 overestimated and underestimated experimental liquid densities at
298 K using GAFF and MMFF, respectively. For CCMal (Figure 7d), both
GAFF and OPLS-AA overestimated the densities, except at 298 K where
OPLS-AA showed near perfect agreement (0.1% deviation35). Finally, for
the CCLev DES (Figure 7e), OPLS-AA35 showed the closest agreement
with experimental data (0.2−0.4% error) as compared to GAFF,32 MMFF,32

and MDynaMix.37

An important consideration when developing DES FF parameters is the
role of charge scaling to improve agreement in densities. The results pre-
sented in Figure 7a−d for the model used by Perkins et al. employed a
charge scaling factor of ±0.8 e with default GAFF parameters.31, 55 This was
found to reproduce density better than unscaled charges (i.e., +1 for cations
and −1 for anions) or a scaling of ±0.9 e. Similarly, scaling by ±0.75 e was
found to yield better results for CCGly and CCLev modeled using GAFF
Mainberger et al.32 when compared to unscaled charges. Simulations with
MMFF32, 78 employed full charges (Figure 7a,c,e) and OPLS-AA35 simu-
lations used a scaling factor of ±0.8 e. As an alternative, FFs developed
by García et al.20 and Ullah et al.37 featured charges calculated from small
DES clusters. For example, instead of ±1 e for the cation/anion and a neutral
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charge for the HBD molecules, charges of +0.8254 e, −0.6849 e, −0.0663 e,
and −0.0743 e were used for choline, chloride, and the two levulinic acid
molecules, respectively.37 Ferreira et al.99 also derived charges from bulk
AIMD simulations for the CCPro system that resulted in a scaling of 0.74
and found good agreement (3% error) with a very specific combination of
existing FFs.75, 76, 102 Finally, Mainberger et al.32 included LJ parameters for
hydrogen atoms, but their addition did not show a remarkable improvement
in liquid density compared to the other FFs discussed. It is worth mentioning
that with respect to DESs, due to a lack of reported experimental densities
for many systems, research groups have used alternative methods to pre-
dict densities that include empirical group contribution methods and neural
network models.105, 119

Volume Expansivity

Volume expansivity is calculated from the slope of the molar volume versus
temperature curve as described in Eq. [9]. Table 6 provides a comparison
between computed DES volume expansivity values from multiple FFs and
experimental measurements. Perkins, Painter, and Colina31, 55 computed
the volume expansivity for four different DESs using GAFF parameters
with ±0.8 e scaled charges. Their simulations yielded close agreement
with most experimental measurements,78, 116 with the notable exception of
CCGly, which was overestimated. The MMFF78 and the MDynaMix37 FFs
also yielded excellent volume expansivity predictions. Finally, the use of
mixed FF parameters by Ferreira et al.98 for CCEtg provided values at the
lower and upper bounds of experimental measurements.

𝛼P = 1
V

(
𝜕V
𝜕T

)
[9]

Surface Tension

The reproduction of DES surface tension is important for several industri-
ally relevant applications involving separation, distillation, and extraction.
Unfortunately, the availability of experimental DES surface tension data
is limited due to measurement difficulties; consequently, predictive mod-
els have often been employed as an alternative. 119, 120 Macleod proposed a
relation to estimate the surface tension as given by Eq. 10121, 122 where 𝜌L
and 𝜌V represent liquid and vapor density, 𝜎M is the surface tension, and K
is a constant. This relation was modified (Eq. [11a])121, 123 where the con-
stant K in Macleod’s equation was replaced by a new constant known as
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TABLE 6 Comparison of Average Volume Expansivity 𝜶P × 104 (K−1) for Deep
Eutectic Solvents.

DES Authors/force field Simulations Experiments78, 116

CCU Perkins et al.55 GAFF (0.8) 5.32 4.378 to 6.0
Shah and Mijalli78 MMFF 4.278

CCEtg Perkins et al.31 GAFF (0.8) 6.45± 0.05 5 to 7
Ferreira et al.98 Mixed 5.48± 0.02,

7.67± 0.02
CCGly Perkins et al.31 GAFF (0.8) 6.09± 0.07 4.6 to 4.7
CCMal Perkins et al.31 GAFF (0.8) 4.91± 0.29 5 to 6
CCLev Ullah et al.37 MDynaMix 5.76 5.83 to 5.93

the parachor (P) expressed in terms of molar quantities. In cases where the
vapor density is negligible in comparison with the liquid density, P is given
by Eq. [11b] where MW is the molecular weight and 𝜌 is the liquid den-
sity. P can be expressed as a sum of the contributions from its constituents,
comprising atoms or groups in the molecule, as shown in Eq. [11b], where Pi
denotes individual contributions.124

𝜎S can be calculated by using the known
density of a given compound. The parachor contribution values were later
improved for neutral compounds.124, 125 Knotts et al. developed a quantita-
tive structure–property relationship for P from data for neutral organic com-
pounds available in the DIPPR database.126 This model was then extended
to charged systems such as ionic liquids.127, 128 The percent error obtained
for CCGly and CCEtg using the parachor method at 298 K were 3.74% and
5.91%, respectively.121

𝜎M = K(𝜌L − 𝜌V )4 [10]

𝜎S = [P(𝜌L − 𝜌V )]4 [11a]

P =
Mw𝜎s

1∕4

𝜌

=
∑

i

Pi [11b]

An alternative approach for estimating surface tension is to employ the
Othmer equation (12),119 where the surface tension at a given temperature
T can be calculated using the critical temperature (TC) and a reference sur-
face tension (𝜎ref) at another temperature (Tref). Deviations between values
predicted from the Othmer relation and experimental measurements worsen
with increasing temperature.119 Nevertheless, the overall percent error for



�

� �

�

164 REVIEWS IN COMPUTATIONAL CHEMISTRY, VOLUME 32

nine DES systems was 2.57%, highlighting the empirical Othmer model as
a good approach for predicting surface tensions.121

𝜎(T) = 𝜎ref

[
(Tc − T)
Tc − Tref

] 11
9

[12]

Employing MD simulations to calculate surface tensions of DESs.
Only two simulation studies to the date this chapter was written have
been reported. Doherty and Acevedo (OPLS-AA)35 calculated the surface
tension for four DES systems: CCU, CCEtg, CCGly, and CCMal. Ferreira
et al. (mixed CHARMM27+OPLS-AA+GAFF)98 calculated the surface
tension for CCEtg. The z-axis of the simulation boxes was elongated by a
factor of 3 and 2 by Doherty and Acevedo, and Ferreira et al., respectively.
The surface tension was computed from the directional components of the
pressure tensor as given by Eq. [13] where 𝜎MD and LZ represent the surface
tension and length of the box along the z direction, respectively. PZZ, PXX,
and PYY represent the directional components of the pressure tensor.

𝜎MD = 1
2

Lz

[
PZZ − 1

2
(PXX + PYY )

]
[13]

Table 7 provides a comparison of surface tension values for DESs com-
puted using MD simulations and the analogous experimental data/empirical
models. Notably, the surface tension computed from OPLS-AA simulations
were calculated at 425 K.35 Due to the absence of experimental data at this
temperature, MD predictions were compared to surface tensions calculated
using the Othmer equation at 425 K utilizing experimental data at 298 K as
the reference point.119 The OPLS-AA FF provided excellent performance
yielding small deviations ranging from 0.5% to 2.0%. In the work of Fer-
reira et al.,98 surface tensions were directly compared with experimental data
available at similar temperatures (298−323 K) and yielded larger deviations
of 3.5−5.7%.

THERMODYNAMIC PROPERTIES

Heat Capacity

Heat capacity at constant pressure (CP) is defined by Eq. [14a], where H rep-
resents the enthalpy (Eq. [14b]), Uinter and Uintra are the intermolecular and
intramolecular potential energies, respectively, and KE denotes the kinetic
energy. The enthalpy is often expressed as a sum of ideal (Hid) and residual
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TABLE 7 Comparison of Surface Tension (mN/m) for Deep Eutectic Solvents.

DES Authors/force field Simulation Experiment98, 119

CCEtg (298 K) Ferreira et al.98 Mixed 48± 3 48.91± 0.1
CCEtg (313 K) 47± 3 47.50± 0.1
CCEtg (323 K) 45± 6 46.67± 0.1
CCU (425 K) Doherty and
Acevedo35 OPLS-AA (0.8) 38.9 38.7
CCEtg (425 K) 35.9 35.4
CCGly (425 K) 43.2 44.1
CCMal (425 K) 51.3 52.3

(Hres) contributions, as described by Lagache et al.129 and Cadena et al.130

(Eqs. [15a]–[15c]). Therefore, Cp is written as the sum of ideal and residual
contributions (Eqs. [16a]–[16c]).

Cp(T ,P) =
(
𝜕⟨H⟩
𝜕T

)
P

[14a]

H = Uinter + Uintra + KE + PV [14b]⟨H⟩ = ⟨Hid⟩ + ⟨Hres⟩ [15a]

Hid = Uintra + KE + NkbT [15b]

Hres = Uinter + PV − NkbT [15c]

Cp(T ,P) = Cid
p (T) + Cres

p (T ,P) [16a]

Cid
p (T) =

(
𝜕⟨Hid⟩
𝜕T

)
P

[16b]

Cres
p (T ,P) =

(
𝜕⟨Hres⟩
𝜕T

)
[16c]

The residual, Cres
P , and ideal, Cid

P , contributions to the heat capacity are typ-
ically obtained from MD simulations and experiments, respectively.129, 131

For example, DES Cres
P values are typically derived from the slope of

a plot featuring Hres (Eq. [15c]) at multiple temperatures.31, 55 As men-
tioned, Cid

P should be measured experimentally, but when unavailable,
ab initio calculation-derived values may be substituted.31, 55, 88, 130, 131

For example, Perkins, Painter, and Colina31, 55 carried out gas-phase
DFT calculations to optimize isolated ChCl and HBD moieties and then
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performed a vibrational frequency analysis to obtain Cid
P . It is important to

emphasize that the Cid
P values obtained in this manner were significantly

overestimated compared to experimental values for multiple systems,
including water and DESs.130, 132, 133 This can be attributed to the fact that
classical FFs use simple harmonic approximations, which overestimate
the vibrational energy of molecules.131, 133, 134 The need for further refine-
ment of FF parameters to accurately reproduce heat capacities has been
acknowledged.55, 130, 131 A simple correction is to apply a scaling factor to
the computed QM vibrational frequencies that is consistent with the level
of theory employed.88, 130, 131

An alternative approach for computing heat capacity is a two-phase
model proposed by Lin, Blanco, and Goddard III134 where the vibrational
density of states (DoS) is calculated to account for QM corrections to the
thermodynamic properties of liquids. DoS represents the distribution of
the vibrational normal modes of a system, expressed as a function of the
normal-mode frequency (𝜈). The DoS, denoted by S(𝜈), can be obtained
from the Fourier transform of the mass weighted sum of the atomic velocity
autocorrelation functions. The distributions obtained are then normalized to
the total number of degrees of freedom in the given system; thermodynamic
properties such as heat capacities can then be calculated by assuming each
normal mode to be a quantum mechanical oscillator with a frequency
𝜈. This method was employed to compute heat capacities for several IL
and DES systems.35, 91, 92, 133 The corrected heat capacity is described
in Eq. 17a, where Ccorr

P and Cclass
P represent the corrected and classical

heat capacities at constant pressure. 𝛿CQM
v denotes the QM-corrected

heat capacity at constant volume and is given by Eq. 17b, where W is a
weighting function. In DES simulations by Doherty and Acevedo,35 an
additional term Nckb was added to the Cclass

P term to account for neglected
contributions due to bond constraints present in the simulations.

Ccorr
P = Cclass

P + 𝜕CQM
v [17a]

𝜕CQM
v = kb ∫

∞

0
(W(𝜐) − 1)S(𝜐)d𝜐 [17b]

A comparison of heat capacities computed from DES molecular
simulations has been provided in Table 8. However, given the multiple
methods employed and the differences in temperature reported in the
simulations, direct comparison between the force field parameters is not
straightforward. Perkins, Painter, and Colina.31, 55 reported heat capacities
derived from GAFF simulations to be within the range of experimental data



TABLE 8 Comparison of Cp (J/mol K) for Deep Eutectic Solvents.

DES Authors/force field Temperature (K) Simulation Experiment106

CCU Perkins et al.55 GAFF (0.8)a 298–330 184 181.4± 0.5 to 186.4± 0.5
Doherty and Acevedo35 OPLS-AA (0.8) 353 201.9 190.8± 0.8

CCEtg Perkins et al.31 GAFF (0.8) 298–330 209.27± 1.55 190.8± 0.4 to 199.2± 0.3
Doherty and Acevedo35 OPLS-AA (0.8) 353 215.8 205.6± 0.2

CCGly Perkins et al.31 GAFF (0.8) 298–330 259.15± 2.87 237.7± 0.6 to 246.9± 0.1
Mainberger et al.32 GAFF (0.75) 303 244.0± 2.9 237.7± 0.6
Mainberger et al.32 MMFF 303 246.3± 8.6 237.7± 0.6
Doherty and Acevedo35 OPLS-AA (0.8) 353 240.1 254.3± 0.4

aValues in parentheses (0.75 or 0.8) indicate charge scaling factor in the given force field.
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for CCU; however, 7% errors were computed for the CCEtg and CCGly
DESs. Simulations by Mainberger et al.32 using their custom GAFF and
MMFF parameters found relatively lower percent errors of 2.6% and 3.6%,
respectively, for CCGly. Finally, OPLS-AA simulations by Doherty and
Acevedo35 gave error percentages of 5.8%, 5.6%, and 4.9% for CCU,
CCEtg, and CCGly, respectively. An alternative to FF predictions was
developed by Taherzadeh et al.135 using a correlation model trained on 505
Cp values from 28 DES that yielded an absolute average relative deviation
of 4.7% for all investigated data points.

Heats of Vaporization

Heats of vaporization (ΔHvap) are calculated according to Eq. 18, where
ΔEvap is the difference between the total energies of the gas and liquid phase,
T is the temperature, and R is the universal gas constant.

ΔHvap = ΔEvap + RT [18]

With respect to DES simulations, calculating ΔHvap is very challenging as
the vapor phase composition is experimentally unknown. A thorough inves-
tigation by Salehi et al.104 computed the ΔHvap for CCU, CCEtg, CCGly,
CCMal, and CCOx using OPLS-AA parameters by Doherty and Acevedo35

and for CCU using GAFF parameters from Perkins, Painter, and Colina31

by utilizing three different vaporization clusters: HBD, HBA, and a clus-
ter from the DES mixture. For the CCU solvent, the ΔHvap derived from the
vaporization of urea, ChCl, and a ChCl-urea cluster using OPLS-AA was 82,
165, and 228 kJ/mol, respectively. Comparison to the experimentally esti-
mated ΔHvap values of 46.9 and 79.0 kJ/mol obtained from vapor pressure
data of Ravula et al. and Shabaz et al.,136, 137 suggests that it is more likely
for HBD molecules to vaporize from the DES mixture and dominate the
vapor phase. Similar results and agreement with experiment were computed
by Salehi et al. for the CCEtg and CCGly DESs using OPLS-AA.104 How-
ever, the GAFF parameters yielded less accurate ΔHvap values for CCU. In
separate work, Ferreira et al. utilized their mixed FF parameter set to com-
pute ΔHvap for CCEtg98 and CCPro99 and found the values ranged from
167.5± 0.3 to 179.5± 0.5 kJ/mol and 161−210 kJ/mol, respectively. Finally,
Ullah et al.37 calculated theΔHvap value for CCLev using their custom MDy-
naMix parameters and reported an energy of 52.05 kJ/mol.
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Isothermal Compressibility

Isothermal compressibility (𝜅T) can be expressed as a change in molar vol-
ume (V) with pressure (P) at a given temperature, or, alternatively, in terms
of fluid density (𝜌) as given in Eq. 19.

𝜅T = − 1
V

(
𝜕V
𝜕P

)
T
= 1

𝜌

(
𝜕𝜌

𝜕P

)
T

[19]

To compute 𝜅T using MD simulations, the relationship between V (or 𝜌)
and P could be obtained by fitting an equation of molar volume at varying
pressures (at constant temperature). However, a simpler approach was devel-
oped by Motakabbir and Berkowitz (Eq. 20),138 where a linear isotherm was
assumed in the pressure range used to calculate 𝜅T . Here, 𝜌1 and 𝜌2 repre-
sent the densities at pressure P1 and P2, respectively. The simulations can
be divided into smaller blocks in order to obtain multiple values of 𝜅T at the
desired temperature.

𝜅T = 1
𝜌

(
𝜕𝜌

𝜕P

)
T

≈ Δ ln(𝜌)
ΔP

=
ln
(
𝜌2
𝜌1

)
P2 − P1

[20]

It is important to emphasize that a linear approximation may not be appro-
priate for different classes of liquids or within specific pressure/temperature
ranges and may lead to inaccurate estimation of 𝜅T. Alternatively, the Tait
equation139 can be substituted to fit molar volumes/densities obtained from
MD simulations to provide a correlation to pressure.140, 141 In this method,
𝜅T is calculated using the fluctuations formula142 as given by Eq. 21, where
FFs ⟨𝛿V2⟩NPT and ⟨V⟩NPT denote the volume fluctuations and average vol-
ume of the simulation box in the NPT ensemble, respectively. The volume
fluctuations method has been used widely to compute 𝜅T for several charged
liquid systems including ILs.84, 143–146

𝜅T =
⟨𝛿V2⟩NPT⟨V⟩NPTkbT

[21]

Both methods, i.e., Eqs. [20] and [21], were compared by computing
𝜅T values using the SPC/E water model and provided similar 𝜅T values of
38.47± 1.16 and 34.07± 5.21 in 10−11 Pa−1, respectively.138 Simulations at
323 K and 0.98 bar for the IL [bmim][PF6] performed by Shah et al.140 also
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gave similar error percentages, 40.3% and 41.1%, for the linear approx-
imation and Tait equation methods, respectively. With respect to DES
simulations, 𝜅T values have been reported for CCEtg by Ferreira et al.98 at
298, 313, and 323 K using Eq. 21. Multiple FFs were tested, but the mixed
parameter set termed 0.8FFM (i.e., GAFF (Ch+)31 +OPLS-AA/AMBER
(Cl−)76 +OPLS-AA (ethylene glycol)147), yielded the closest agreement
with error percentages of 11%, 1.5%, and 0.1% at 298, 313, and 323 K,
respectively. Notably, FF combinations that displayed better agreement
for 𝜅T did not necessarily show good performance for other DES sol-
vent properties including self-diffusion coefficients, surface tension, and
viscosity.

TRANSPORT PROPERTIES

Viscosity

Viscosity is an important property for evaluating FF parameters, particu-
larly when gauging the accuracy of computed intermolecular interactions.
Fortunately, due to the relative ease of measurement and the importance of
DESs in industrial processes,57 experimental viscosities are often readily
available for comparison. However, the highly viscous nature of DESs41

often leads to major discrepancies in reported values under the same
conditions. For example, viscosities for CCU at ambient conditions have
been reported to range from 152 cP40 to 527.28 cP.111 The cause of such
large deviations may stem in part from differences in the experimental
methods,110 but more likely arise from the presence of impurities during
the preparation process.57 Many classes of DESs are highly hygroscopic,
and water has been found to have a dramatic effect on the viscosities of
these solvents. For example, the viscosity of CCU was shown to decrease
by approximately 60% when shifting from pure DES to 0.1 mol fraction
of water.111 Additionally, Florindo et al.110 found that CCOx has a consid-
erable affinity for atmospheric water, citing a 19.40% water content that
dropped the viscosity from 5363 to 44.49 cP at 303.15 K. The cause of such
dramatic decreases in viscosity is believed to be from the disruption of the
complex hydrogen bond network that is attributed to DES’s highly viscous
nature.41, 110

Along with impurities, increasing the molar ratio of HBDs present in
a DES can also decrease the viscosity as a consequence of disrupting the
hydrogen bond network of the solvent. For example, the viscosities for
CCPhe at 1 : 2, 1 : 3, and 1 : 6 molar ratios are reported as 90.33, 44.64,
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and 21.43 cP, respectively.41, 148 As more phenol was added, it is suggested
that the HBD eventually acts as an organic solvent which disrupts the
Coulomb interaction between the cation and anion, leading to the same
effect seen when water is introduced to the system. However, for CCGly
the opposite effect was observed, as the molar ratio increased from 1 : 2 to
1 : 3 to 1 : 4 the reported viscosity values (at 293.15 K) also increased, i.e.,
376, 450, and 503 cP, respectively.41, 148, 149 This phenomena is attributed
to the strong cohesive energy between glycerol molecules that generates a
strong hydrogen bond network limiting ion mobility and thus increasing
the viscosity.41 Considering these examples, it is important to consider the
ratios used during the construction of DESs when studying their viscosities.

Temperature also has a significant effect on the viscosity of DESs.110, 150

For example, substantial decreases in viscosity going from 298 to 328 K
were reported for CCU (1 : 2 molar ratio): 750 to 95 cP, CCGly (1 : 2
molar ratio): 259 to 52 cP, and CCMal (1 : 1 molar ratio): 1124 to 161 cP,
respectively.44, 110 A strong relationship between the temperature depen-
dence of the DES viscosity and the strength of the ion-HBD intermolecular
forces has been suggested based on fittings to an Arrhenius model which
allows for activation energies (Ea) to be calculated.110 In this correlation,
DESs that exhibit low viscosities have a low Ea, whereas systems with high
viscosity values have a relatively higher Ea. For example, CCEtg (1 : 2 molar
ratio) which has a reported viscosity of 39.7 cP at 298.15 K has an Ea of
−11.26 kJ/mol, while CCOx (1 : 1 molar ratio) which has a reported viscos-
ity of 208.3 at 348.15 K has an Ea of −65.20 kJ/mol.41, 57 This trend further
highlights the dramatic effect of ion-HBD interactions upon the overall vis-
cosity.

When calculating the viscosity of a system computationally, the type of
simulation falls under two categories: equilibrium MD and nonequilibrium
molecular dynamics (NEMD). MD is desirable because the viscosity can be
calculated from either pressure or momentum fluctuations in an equilibrium
trajectory via a single simulation. A common approach to relating pressure
fluctuations to viscosity uses the Green–Kubo formula (Eq. 22).151

𝜂 = V
kBT ∫

∞

0
⟨Pxz(t0)Pxz(t0 + t)⟩t0

dt [22]

Here, V is the volume, T is the temperature, kb is the Boltzmann constant,
and Pxz is the off-diagonal element of the stress tensor. To reduce uncer-
tainties arising from large pressure fluctuations, the integral is often fit to a
pressure tensor autocorrelation function. However, due to the slow dynamics
and relaxation times of the highly viscous solvents, the Green–Kubo method
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struggles to accurately sample pressure tensors unless very long simulations
are performed.152–154

Alternatively, NEMD methods have been shown to properly treat highly
viscous solvents91, 92, 155, 156 by applying an external force to the solvent and
relating the resulting flux back to the viscosity. As a result, additional simu-
lations are required beyond the equilibrium trajectory. One method that has
been used extensively is the periodic perturbation method.157 In this method,
an external force of a chosen amplitude is applied in the x direction, ax, to
three-dimensional periodic cells to create a velocity field u. The velocity
field can then be described using the Navier–Stokes equation (Eq. 23) where
ay and az are equal to zero, resulting in velocity fields in the y and z direction
to also be zero. The equation for the velocity field then becomes

𝜌

𝛿ux(z)
𝛿t

= 𝜌ax(z) + 𝜂

𝛿
2ux(z)
𝛿z2

[23]

where 𝜌 is the mass density. The velocity field is easily calculated throughout
the simulation with the use of a velocity profile, V. The velocity profile is
then related to the viscosity of the system using Eqs. [24] and [25], where lz
is the height of the box and Λ is the acceleration amplitude of the external
force, ax(z) (Eq. 26).

𝜂 = Λ
V

𝜌

k2
[24]

k = 2𝜋
lz

[25]

To ensure a smooth velocity profile with small local shear rates, the exter-
nal force is controlled with a cosine function.

ax(z) = Λcos(kz) [26]

The selection of a proper acceleration amplitude is crucial, as it should
be large enough to properly probe the system, but small enough so that the
equilibrium of the system is not completely destroyed. Multiple simulations
are then required at varying amplitudes, typically ranging between 0.02 and
0.25 nm/ps2, in order to get point viscosities at each amplitude. Extrapola-
tion to an undisturbed system where, Λ = 0, is taken as the viscosity of the
system.

An alternative NEMD, called the D-base method, was recently tested on
a highly viscous ionic liquid system [Bmim][Tf2N].158 This method utilizes
finite-size effects of self-diffusion coefficients to calculate the viscosity of a



�

� �

�

MOLECULAR SIMULATIONS OF DEEP EUTECTIC SOLVENTS 173

bulk system through the equation of Yeh and Hummer (Eq. 27).159 Multiple
simulations are required to provide diffusion coefficients at various system
sizes.

DMD
self =

(
1
𝜂

)(
−
𝜉kbT

6𝜋L

)
+ D∞

self [27]

From Eq. 27, 𝜉 is a dimensionless constant equal to 2.837297, and L is
the length of the simulation box. Eq. 27 is in a linear form, where DMD

self
is the independent variable and −𝜉kBT/6𝜋L is the dependent variable. D∞

self
is the intercept of the linear function, representing the thermodynamic limit
in which L→∞. The inverse slope of the line is then taken as the viscos-
ity of the system. In order to incorporate all species in the system, DMD

self is
replaced by an average of each self-diffusion coefficient weighted by their
corresponding mole fraction (Eq. 28).

Davg = lim
t→∞

1
6t

1
N

⟨
n∑

i=1

Ni∑
j=1

(rj,i(t) − rj,i(0))2
⟩

[28]

Here n and N are the total number of species and molecules in the mixture,
respectively. When used on the [Bmim][Tf2N] ionic liquid system at increas-
ing temperatures, the predicted viscosities matched well with Green–Kubo
data reported by Zhang et al.160 Although the D-base method has not been
applied to DESs to the date this chapter was written, it does have consid-
erable potential for future use with its ability to handle viscous mixtures
possessing more than one molecular species.

Another potential avenue for computing the viscosities of DESs is the
Müller-Plathe method, which has been successfully applied to the ionic liq-
uid system [Emim][Tf2N].161, 162 The Müller-Plathe method uses a reverse
nonequilibrium molecular dynamics approach (RNEMD), where a momen-
tum flux causes the corresponding external field that is related to the viscos-
ity using Eq. [29. This differs from the NEMD approach, where an external
field elicits a flux within the system which is then related to the viscosity by
the Navier–Stokes equation.

jy = −𝜂(�̇�)
𝛿vx

𝛿y
[29]

In Eq. 29, jy is the momentum flux that is imposed, and �̇� is the velocity
gradient which can be calculated using a velocity profile throughout a simu-
lation. The momentum flux is arbitrarily chosen by dividing the simulation
box into an N number of “slabs” in the y direction and then exchanging
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the largest momentum difference, Px,nc
− Px,n1

, in the x direction between
two atoms from differing slabs. The total momentum exchange, Ptotal, and
resulting flux at a time t is calculated with Eqs. [30] and [31].

Ptotal =
∑

(Px,nc
− Px,n1

) [30]

jy(Px) =
Ptotal

2tLxLz
[31]

Lx and Lz are the lengths of the simulation boxes in the x and z direction. The
resulting velocity gradients, which are calculated by the velocity profiles
of the simulation, are then related back to Eq. [29] to obtain the viscosity.
Calculated viscosities for the IL system [Emim][Tf2N] gave a root mean
squared error of 15% when compared to experimental values.162 Again,
while this method has yet to be applied to DES systems, it may present a
viable option for future studies.

Errors between MD and NEMD methods have been highlighted in the
DES system CCLev (1 : 2 molar ratio). Using the Green–Kubo method, a
calculated viscosity of 265 cP at 298 K was overestimated compared to the
weighted experimental value of 226.8 cP, a 16.8% error.37 Comparatively,
the periodic perturbation method proved to be more accurate yielding a vis-
cosity of 220.8 cP, a 2.6% error.35 Additional simulated viscosities featuring
the Green–Kubo method have been reported for CCU (1 : 2 molar ratio),
CCGly (1 : 2 molar ratio), and CCMal (1 : 1 molar ratio) at 318 K with
percent errors of 35.4%, 26.8%, and 31.8% respectively.20 Simulated vis-
cosities using the periodic perturbation method for these same systems gave
percent errors of 1.1%, 3.3%, and 1.9%, respectively, at 303 and 348 K.35

Altamash et al. calculated the viscosity of the DES system choline chlo-
ride phenylacetic acid (1 : 2 molar ratio) using the Green–Kubo method
and found at 298 K the simulations performed modestly with percent error
of 16.4%.163 However, when the temperature increased to 345 K, the per-
cent errors became as high as 80.1% illustrating the importance of studying
DESs systems within a wide range of temperatures. Alternatively, Zhang
et al.36 found using the time decomposition method160 of the Green–Kubo
theory for CCEtg (1 : 2) while utilizing the parameters of Perkins et al.31

performed better at elevated temperatures where calculated viscosities were
overestimated by 5−8 cP. The periodic perturbation method when coupled
to the OPLS-AA FF developed by Doherty and Acevedo35 found that tem-
perature had little effect on the accuracy of each prediction, where a MAE
of 14 data points was calculated to be 1.6% (Table 9). However, there are
cases where the percent error did increase marginally as the temperature was
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TABLE 9 Calculated and Experimental Viscosities (cP) at Various Temperatures.

DES Simulation Experiment % error

298.15 K
CCEtg 39.5 39.7 0.6
CCGly 258.8 259.0 0.1
CCLev 220.8 226.8 2.6
CCPhe (1 : 2) 89.1 90.3 1.3
CCPhe (1 : 3) 44.4 44.6 0.4
CCU 753.1 749.9 0.4

303.15 K
CCEtg 35.0 35.0 0.0
CCGly 246.8 238.9 3.3
CCLev 164.0 164.5 0.3
CCPhe (1 : 2) 64.7 68.4 5.4
CCPhe (1 : 3) 36.5 35.2 3.7
CCU 520.5 514.8 1.1

348.15 K
CCMal 94.9 96.7 1.9
CCOx 205.2 208.3 1.5
MAE (%) 1.6

aWeighted experimental averages were computed at various temperatures where each weight
was determined by the inverse of its reported uncertainty.
Source: Doherty et al. 201835.

raised by 5 K, and further studies may be needed at higher temperatures for
a full evaluation.

Along with the calculated viscosity method, the quality of the FF can
influence bulk-phase properties significantly. A list of FFs that have been
used to simulate DES viscosities is given in Table 10. The importance of
selecting a proper force field is emphasized by Ferreira et al. who tested
eight combinations of nonpolarizable FF parameters from the literature
for the different components of CCEtg (1 : 2 molar ratio).98 This includes
choline parameters from Sambasivarao and Acevedo,75 Perkins et al.55

and OPLS-AA intramolecular parameters.77 Chloride parameters were
taken either directly from OPLS-AA77 or from Canongia Lopes et al.76

which were developed for IL simulations. For ethylene glycol, the HBD
parameters were taken from either OPLS-AA,77 Szefczyk and Cordeiro,147

or Gorny et al.100 In addition, each combination was evaluated with integer
charges (±1 e) and scaled charges (±0.8 e). Substantial improvement for
self-diffusion coefficients were observed when the charges were scaled.
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TABLE 10 Viscosity Calculation Methods Utilized in DES Simulations.

Simulation by DES studied
Charge

assignment Method

Ullah et al.37 CCLev (1 : 2) Scaled Green–Kubo
Doherty and
Acevedo35

CCEtg (1 : 2),
CCGly (1 : 2),
CCLev (1 : 2),
CCMal (1 : 1),
CCOx (1 : 1),
CCPhe (1 : 2),
CCPhe (1 : 3),
CCU (1 : 2)

Scaled Periodic Perturbation

García et al.20 CCGly (1 : 2),
CCMal (1 : 1),
CCU (1 : 2)

Scaled Green–Kubo

Altamash et al.163 CCPhOAc
(1 : 2)

Scaled Green–Kubo

Zhang et al.36 CCEtg (1 : 2) Scaled Green–Kubo
Ferreira et al.98 CCEtg (1 : 2) Unscaled, scaled Periodic perturbation
Ferreira et al.99 CCPro (1 : 2) Unscaled, scaled Periodic perturbation

While using the periodic perturbation method, five FF combinations
struggled to match experimental viscosity values shown in Figure 8, where
measurements were underestimated by a factor of 2.5 on average. However,
at 298 K some FFs performed considerably better than others, stemming
from the treatment of short-range interactions and hydrogen bonding that
are governed by the quality of the parameters. Also worth noting is the
ability to capture the temperature dependence of viscosity measurements,
where calculated values normalized by the 298 K measurement are in very
good agreement with experimental data. Overall, great care should be taken
when selecting (1) FF parameters and (2) viscosity calculation methods, as
viscosity predictions derived from atomistic DES simulations have been
shown to be highly sensitive to both choices.

Aside from MD simulations, the viscosity of DES systems can also
be calculated with equations of state models in combination with various
friction theories which has been outlined in the review by González de
Catilla et al.164 For example, Haghbakhsh et al.165 used friction theory along
with the cubic plus association and perturbed chain-statistical associating
fluid theory to calculate the viscosity of 27 different DES systems and
found an average relative deviation from experimental values of 4.4% for
both models. A follow-up version of the models were used by the same
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group where results were then improved to an average deviation of 2.7%.166

Additionally, Lloret et al.167 used a soft-SAFT with free volume theory for
quaternary ammonium chloride containing DES systems and found good
agreement with experimental trends.

Diffusion Coefficients

The importance of understanding the mechanism of how ions/molecules
diffuse in DES systems has been discussed in the literature and tested
experimentally.44, 57, 168 Originally, DESs were thought to move similarly
to ILs which have been characterized by Zhao et al. using a modified
hole theory.169 In the modified hole theory, ions diffuse moving from
one vacancy to another when an ion’s hole size is smaller than the one
adjacent to it. While it is still believed that the mobility of the holes are the
dominant factor in an ion’s diffusivity resulting in a jumping mechanism,44

the hydrogen bond network between the ions and HBD should also
be considered as it can hinder the mobility of each component. To our
knowledge, only D’Agostino et al.44 and Abbott et al.168 have reported
diffusion coefficients with the use of pulse field gradient nuclear magnetic
resonance (PFG-NMR) for DES systems. D’Agostino et al.44 found the
HBD interactions to be important for CCMal, where it is believed that the
carboxylic acid functional groups of maline create a dimerization through
hydrogen bonding that leads to long chains and hinders the mobility of the
ions within the system. Abbott et al.168 also found that when more choline
chloride was added to a CCGly system, the choline chloride would break
up the intermolecular forces between glycerol molecules and increase their
diffusivity, highlighting the importance of the hydrogen bond network
established as well as the molar ratio in each DES system. Experimentally,
cations are found to diffuse slower than HBDs for urea, glycerol, and
ethylene glycol which can be explained by the hole theory. However,
the opposite trend is seen with malonic acid due to its dimerization that
was explained previously. The importance of temperature has also been
stated in literature,44 where results show an Arrhenius-type behavior.
The temperature dependence is also crucial when considering simulated
diffusion coefficients which is explained later.

For a simulated system, the diffusion coefficient is calculated by applying
the Einstein relation and the average mean square displacement for each
ion/molecular center of mass (Eq. [32]).142

Ds =
1
6
lim
t→∞

d
dt

1
N

N∑
i=1

⟨|ri(t) − ri(0)|2⟩ [32]
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Here, ri(t) is the center of mass of species i at time t, and N is the number of
individual species. An important aspect of using the Einstein relation is that
the system is studied within a proper diffusive regime where ions/molecules
are moving freely. A way to monitor the diffusive regime is with the cal-
culation of the beta-parameter (𝛽), which has been previously discussed by
Del Popolo and Voth170 and applied to DES systems by Perkins et al.,31, 55

Doherty and Acevedo,35 Ferreira et al.,98 and Mainberger et al.32

𝛽(t) =
d log10⟨Δr(t)2⟩

d log10t
[33]

Here, ⟨Δr(t)2⟩ is the mean square displacement and t is the time. The
beta-parameter can therefore be plotted versus time and when 𝛽 < 1, the
system is considered to be in the sub-diffusive regime. When 𝛽 = 1,
the system is then considered in the diffusive regime and the diffusion
coefficient can be properly calculated with Eq. [33].

Similar to viscosity calculations, diffusion coefficients are very sensitive
to the treatment of charges assigned to each molecule/ion. For simulations
that utilize a nonpolarizable FF, the use of integer charges (±1 e) for the
ions has shown to significantly underestimate the diffusion coefficients. For
example, Mainberger et al.32 used MMFF parameters with unscaled charges
and found that for CCGly the calculated diffusion coefficients at 328 K had
percent errors as high as 92%. As an alternative, GAFF parameters in com-
bination with RESP charges derived from a minimal cluster of ChCl/HBDs
(1 : 2 ratio) were also tested. Due to charge transfer effects, the species
Ch+, Cl−, and glycerol had scaled point charges of 0.7615 e, −0.6527 e, and
−0.0544 e, respectively. Diffusion coefficient results improved dramatically
to 15.6% and 6.5% errors for choline cation and glycerol, respectively. Fer-
reira et al.98 observed the same improvement when charges were scaled for
CCEtg and CCPro. For example, using unscaled charges by Perkins et al.55

for CCEtG combined with parameters from OPLS-AA,77 calculated diffu-
sion coefficients at 313.15 K had errors of 90.13% and 87.88% for choline
and ethylene glycol, respectively. However, scaling the charges by a factor
of 0.8, improved the errors to 11.8% and 2.8%, respectively. For CCPro,
system specific charges resulted in a scaling factor of 0.74 that did not per-
form as well with errors of 17% and 15% for choline and propylene glycol,
respectively. However, this was a major improvement over the unscaled sys-
tems that never reached the diffusive regime. Calculations of self-diffusivity
using a variety of FFs are presented in Table 11 for multiple DESs.

Another important factor to consider is the temperature of the system.
Typically, at room temperature (298.15 K) systems exhibit a sub-diffusive
character where 𝛽 < 1 due to the strongly correlated hydrogen bonding that
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TABLE 11 Calculated Self-Diffusion Coefficients (D+ and DHBD at
10−11 m2 s−1) at 298.15 and 330.15 K for Deep Eutectic Solvents.

DES Force field D+ DHBD % error D+ % error DHBD

CCU 298.15 K
Doherty and Acevedo35 0.46 0.35 31.4 47.0
Perkins et al.55 0.17 0.39 51.4 40.9
Experiment44 0.35 0.66 — —

330.15 K
Doherty and Acevedo35,a 1.51 3.56 28.1 0.3
Perkins et al.55 2.18 3.67 3.8 3.4
Experiment44 2.10 3.55 — —

CCEtg 298.15 K
Perkins et al.31 1.81 3.75 30.9 21.4
Ferreira et al.98 2.08 4.15 20.6 13.0
Experiment44 2.62 4.77 — —

330.15 K
Perkins et al.31 7.44 15.3 24.0 6.7
Ferreira et al.98,a 14.9 — 52.2 —
Experiment44 9.79 16.4 — —

CCGly 298.15 K
Perkins et al.31 0.30 0.45 21.1 13.5
Experiment44 0.38 0.52 — —

330.15 K
Perkins et al.31 2.11 3.12 17.9 27.3
Mainberger et al.32,a 2.07 2.61 15.6 6.5
Experiment44 1.79 2.45 — —

CCPro 298.15 K
Ferreira et al.99 1.37 2.11 17.0 15.0
Experiment99 1.66 2.49 — —

aMeasured at 328.15 K

occurs between the cation and anion creating a cage that the ions cannot
escape until the temperature is raised.44 Although scaling charges has
shown to improve results, simulations at room temperature still struggle
as shown by Perkins et al.31, 55 where they analyzed diffusion coefficients
at both 298 and 330 K for CCU, CCEtg, and CCGly using the GAFF FF
with RESP derived charges on isolated ions/molecules. Most noticeably
for the CCU system, results at room temperature gave large errors of
51.4% and 40.9% for choline and urea, respectively. Results improved
considerably however when the temperature was raised to 330 K, with
calculated diffusion coefficients for choline and urea having 3.8% and 3.4%
errors, respectively. Although improvement was seen when the temperature
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was raised to 330 K for every DES system, reported percent errors were
still as high as 27.3%. Despite the errors, diffusive trends were adequately
captured for all simulated results reported. Shown in Figure 9, Perkins
et al.55 found that urea diffuses faster than the heavier and larger choline
ion for CCU which is consistent with experimental findings.
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As with any simulation, refinement of FF parameters can lead to
more accurate predictions of bulk-phase and transport properties. Modest
improvement was accomplished by Ferreira et al.98 by testing various
combinations of FF parameters for each component of CCEtg. After scaling
the charges by 0.8 to the best performing parameter combination, predicted
diffusion coefficients improved to an average error of 10% for the temper-
ature range of 298.15−323.15 K. However, the results were inconsistent
and for all combinations tested there was a parabola-like temperature
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dependence for each diffusion coefficient where percent errors more than
doubled between temperatures. A similar trend was reported by Doherty
and Acevedo35 who developed OPLS-AA parameters utilizing a 0.8 charge
scaling for eight different DES systems. At temperatures between 298.15
and 328.15 K, a sub-diffusive regime was observed. Illustrated in Figure 10
are calculated beta-parameters for the choline chloride urea system at
both 298.15 and 420.15 K, clearly showing the temperature dependence
where 𝛽 < 1 is observed for the majority of the 298.15 K simulations and
𝛽 = 1 at 420.15 K. To compensate, simulations were performed at higher
temperature (400.15−500.15 K) and calculated diffusion coefficients were
extrapolated to room temperature. Results varied substantially for the CCU
system, where errors were reported as 31.4%, 0.0%, and 23.2% for 298.15,
308.15, and 323.15 K, respectively.35

Although calculated self-diffusion coefficients can seem accurate at spe-
cific temperatures, there exists an inconsistency for all nonpolarizable FFs
when tested over a range of temperatures. At minimum, simulations should
be run at higher temperatures with adequate lengths in order to ensure a
diffusive regime is properly sampled. Polarizable FFs are likely required to
adequately capture the charge fluctuations that have a large effect on trans-
port properties.

DEEP EUTECTIC SOLVENT STRUCTURE

Radial Distribution Functions

The driving force for DES melting point depression has often been
linked to the complex hydrogen bond network formed between both
the ions and HBDs.44, 54, 168, 171 In addition, physical properties such as
viscosity and diffusion coefficients can be directly related to the DES
local structure and interaction strengths between each component.36, 150

To clarify the liquid structuring of various DES systems including CCU
(1 : 2 molar ratio), CCOx (1 : 1 molar ratio), CCEtg (1 : 2 molar ratio), and
CCGly (1 : 1 molar ratio), neutron diffraction36, 46, 63, 172 and simulation
studies31, 32, 34–36, 45, 55, 69, 78, 150, 173 have been performed. The existence of
a H-bond network is well supported by HOESY NMR,40 FT-IR,55, 174, 175

PFG-NMR,44 and Quasi-elastic neutron scattering.63 The use of ND/EPSR
has been shown to provide specific atomic site–site interactions at an accu-
rate level.46, 172, 176 From the ND/EPSR data, comparisons can be made
to high-level computational methods such as FPMD,45 AIMD,34, 36, 69, 173

and QM/MD simulations.150 MD simulations utilizing nonpolarizable
FFs have also been used to study the structure of CCU (1 : 2 molar
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ratio),20, 35, 54, 55, 177, 178 CCEtg (1 : 2 molar ratio),31, 35, 36 CCLev (1 : 2
molar ratio),37, 94 CCMal (1 : 2 molar ratio),20 and CCGly (1 : 2 molar
ratio)20, 31, 32, 35 and compared to the previously mentioned methods when
applicable.

Analyzing the center-of-mass (COM) RDFs provides insight into how
each component of the DES system is coordinated to one another by inte-
grating the first peak of each interaction. For the system CCU (1 : 2 molar
ratio), the COM RDFs were computed using ND/EPSR46 and MD35, 54 at
room temperature, as well as FPMD45 at 333 K. Table 12 shows the COM
RDF peak distances and coordination numbers computed from ND/EPSR,
indicating the strongest interactions occurred between choline–chloride,
urea–chloride, and urea–urea near 4 Å. Integration of the urea–chloride
peak resulted in a coordination number of two urea molecules per chloride,
which is expected due to the 2 : 1 urea:chloride ratio used to construct
this particular DES. The choline–chloride peak shows a distinct shoulder
around 5 Å implying that there exists multiple interaction sites within
the first solvation shell in which a chloride ion can oscillate between.
Meanwhile, the urea molecules are not only interacting with the chloride
ions, but also with surrounding urea molecules with a coordination value
of 6.77. These results suggest that the HBDs in DESs are highly involved
with the structural ordering of the system and that a complex hydrogen
bond network exists between both the ion pair and HBDs. The importance
of the HBD was also examined by Sun et al.54 who studied the effect of
increasing mole percentages (0%, 25%, 67.7%, and 75%) of urea into
choline chloride using MD. Pure ChCl exhibited strong long-range ordering
between the ions, but when urea was added to the system, the COM RDFs
showed a gradual increase in the ion interaction distance and the second
solvation layer decreasing. This is the result of the chloride ions interacting
urea molecules that have inserted themselves within the ionic lattice and
disrupting the long-range interactions.

Also provided in Table 12 are the coordination numbers calculated using
FPMD and classical MD. Good agreement between all three methods was
observed, with all coordination numbers within error of each other. Mini-
mum and maximum distances are also in good agreement for each peak. It
should be noted that for the MD simulations, the FF was fit specifically to
reproduce the ND/EPSR data while maintaining accurate bulk property pre-
dictions. Significant tailoring of both the Lennard-Jones terms and charges
were required to obtain accurate results and would be a necessary procedure
for future DES systems.35
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TABLE 12 Average Coordination Number (Ncoord) and Position (Å) of the First
Maximum and Minimum in Center-of-Mass RDFs between Choline Cation (Ch),
Chloride Anion (Cl), and Urea.

Classical MD
(303 K)35

ND/ESPR
(303 K)46

FPMD
(333 K)45

Center Shell rmax rmin Ncoord rmax rmin Ncoord rmax rmin Ncoord

Urea Cl 4.3 5.4 1.90 4.0 5.5 2.08± 1.01 4.1 5.3 1.9± 0.4
Ch Cl 4.1 6.4 3.49 4.2 6.7 4.35± 1.30 4.2 6.5 3.1± 0.6
Ch Urea 4.7 7.2 8.76 5.4 6.9 5.91± 2.84 5.1 7.1 8.6± 0.7
Ch Ch 6.5 8.2 5.41 6.3 8.0 6.74± 2.16 — — —
Urea Urea 4.8 6.6 6.00 4.3 6.1 6.77± 3.05 4.7 6.3 4.9± 0.5

Source: Based on Doherty et al. 201835.

TABLE 13 Position of the First Peak in the COM Radial Distribution Functions
for CCGly at 1:1 and 1:2 Molar Ratios.

Peak position (Å)

RDF CCU (1 : 2) CCOx (1 : 1)

Choline–choline 6.4 6.3
Choline–Cl− 4.6 4.5
Choline–HBD 5.4 5.7
HBD–HBD 4.3 5.0
HBD–Cl− 3.7 3.7

Source: Gilmore et al. 2018172.

COM RDFs have also been computed for CCU (1 : 2 molar ratio) and
CCOx (1 : 1 molar ratio) at 338 K using ND/EPSR (Table 13).172 When com-
paring the CCU (1 : 2 molar ratio) results to the room temperature ND/EPSR,
the maximum peak positions were very similar, varying only by an average
of 0.2 Å. There is a noticeable difference in the choline–chloride interaction
where the shoulder indicating the presence of multiple binding motifs is now
a singular broad peak, suggesting that the elevated temperature favors inter-
actions with primarily the hydroxyl group and trimethylammonium region
of choline. For the CCOx (1 : 1 molar ratio) system, the same peak distances
are observed as the CCU (1 : 2 molar ratio) system. Similar to the CCU sys-
tem, the choline-HBD occurs at a shorter distance than the choline–choline
interaction, which indicates an intercalation of oxalic acid within the ionic
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TABLE 14 Position of the First Peak in the COM Radial Distribution Functions
for CCGly at 1 : 1 and 1 : 2 Molar Ratios.

Peak position (Å)
RDF 𝜒 chcl = 0.33 𝜒 chcl = 0.50

Choline–choline 6.5 6.3
Choline–Cl− 4.1 4.1
Choline–glycerol 5.9 5.7
Glycerol–Cl− 4.1 4.1
Glycerol–glycerol 5.3 5.5

Source: Turner et al. 2019176.

lattice. A prominent peak for the choline–chloride interaction over the oxalic
acid–chloride interaction is worth noting, as an AIMD study performed at
375 K by Zahn et al.34 found the opposite trend where preference was given
to the HBD-chloride interaction. This could be a result of elevated temper-
atures but should be examined in future studies.

The importance of the HBD molar ratio has also been recently studied
with the use of ND/EPSR for CCGly.176 Looking at both the 1 : 1 and
1 : 2 ratios, Turner and Holbrey found through COM RDFs that there was
no significant changes in the local structuring when choline chloride was
added to the system (Table 14). However, by observing the partial site-site
RDFs and the corresponding coordination numbers, it was found that the
hydrogen bond network formed between glycerol molecules was disrupted
as choline chloride was added. This may be the cause of the increase in dis-
tance seen in the glycerol–glycerol COM RDF from 5.3 to 5.5 Å. Site–site
RDFs also showed that as the ratio of ions increases from 1 : 2 to 1 : 1, there
was a significant reorganization that occurred to compensate for the excess
choline chloride to the point where the system may be considered more of
a choline chloride ionic liquid environment with glycerol clusters dispersed
throughout.

While COM RDFs provided insight into the general coordination
between each component of a DES system, partial site–site RDFs allowed
for further investigation on specific interactions between atoms of each
species. From the COM RDFs for CCU (1 : 2 molar ratio), it is understood
that within the first solvation shell there are close range interactions
between the cation–anion, anion–HBD, and HBD–HBD creating a complex
hydrogen bond network. From the ND/EPSR results of Hammond et al.,46

there was a clear preference for the chloride to interact with the hydroxyl
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hydrogen of choline for the ion pair. The interactions with the other
hydrogens of choline showed a lower correlation with chloride, but still
have significant peak heights which could be the reason why the shoulder
was seen for the choline–chloride interaction in the COM RDFs. As for
the anion–HBD and HBD–HBD interactions, differentiation between the
hydrogens cis and trans to the urea oxygen is apparent when interacting
with the chloride anion. The ND/EPSR data suggest that the chloride ion
is more likely to interact with the cis hydrogens while the trans hydrogens
have a stabilizing effect in interacting with surrounding urea molecules.
This same trend is observed by Doherty and Acevedo35 using a refined
FF fitted to ND/EPSR data. Alternatively, both AIMD69 and MD55 studies
have observed the opposite phenomena, where site–site RDFs show the
trans hydrogens prefer interactions with the oxygen of surrounding urea
molecules and the cis hydrogens bond with the chloride anion.

Consistent among all DES systems is that the majority of the
cation–anion interactions occurred between the hydroxyl hydrogen of
choline and chloride, while the anion-HBD interactions were dominated
by the hydrogen bonding groups, i.e., OH or NH. Zahn et al.34 studied the
influence of the HBD group with AIMD when the hydrogen bonding ability
of the organic compound varied from urea to ethylene glycol and oxalic
acid (Figure 11). Site–site RDFs showed that as the HBD shifted from
an amine to hydroxyl and eventually a carboxylic acid, the anion-HBD
interaction became stronger as indicated by the increase of the peak height
as well as the decrease in the hydrogen bond distance. These results
match the partial charge analysis performed using the Hirshfield-I charge
partitioning scheme,179 where charge transfer was much more significant
to oxalic acid when compared to urea indicating a stronger hydrogen bond
to the carboxylic acid group. Interestingly, Ullah et al.37 found through
MD simulations that the cation–anion interaction through the hydroxyl
group of choline was still the dominating interaction when compared to
the anion-HBD interaction between Cl− and the carboxylate containing
levulinic acid through site–site RDFs. This is likely due to the fact that
oxalic acid has two sites where the chloride can hydrogen bond to as
opposed to levulinic acid’s single site.

The importance of the HBD is also showcased in the AIMD simulation
of CCGly (1 : 1 molar ratio).173 The strongest hydrogen bonding occurred
between the OH groups of glycerol and Cl−, with the middle hydroxyl group
being the most dominant while the peripheral OH groups hydrogen bonded
with surrounding glycerol molecules. Considerable interactions were also
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observed between choline and glycerol through the hydroxyl groups of both
moieties.

A comprehensive look into the structure of CCEtg (1 : 2 molar ratio)
was recently studied by Zhang et al. where a combination of classical MD,
AIMD, and neutron scattering experiments were utilized.36 The FF used by
Perkins et al.31 was validated as a means to simulate the solvation environ-
ment by matching experimental neutron scattering structure factors, S(q),
as well as computed S(q) through AIMD. RDFs were also compared to
AIMD results at 400 K, and although there were discrepancies in peak height
and position, the overall structure features were captured. Further analysis
was provided by the MD simulations, where calculated coordination num-
ber probabilities showed that on average, the chloride anion is surrounded
by either 1 or 2 ethylene glycol molecules while the choline acts more as
an observer. However, once the chloride anion interacts with the hydroxyl
group of the choline, calculated hydrogen bond lifetimes and peak heights
in the RDFs indicate that the cation–anion interaction is the strongest.

The use of nonpolarizable FFs to recreate the site–site RDFs from
AIMD data has proven to be a difficult task. While Doherty and Acevedo35

were able to match RDFs of ND/EPSR data for CCU,46 the systems
CCEtg, CCOx, and CCGly were less successful. Mainberger et al.32 also
reported problems in obtaining consistent site–site RDFs when comparing
the GAFF and MMFF with scaled charges for CCEtg and CCLev. The
source of this difficulty likely arises from the charge assignment given to
each atom in the deep eutectic system. García et al.94 found that using a
variety of different charge partitioning schemes resulted in considerably
different site–site RDFs for CCLev, and the atoms involved in hydrogen
bonding were particularly sensitive to the charges assigned. Zahn et al.34

suggested that depending on the HBD involved, different scaling factors
should be used for nonpolarizable FFs, and strongly recommended the use
of polarizable FFs as an alternative.

Hydrogen Bond Analysis

In order to perform a hydrogen bond analysis, distances and angles charac-
teristic to DES donors and acceptors need to be defined, e.g., donor-acceptor
distances that range between 2.95 and 3.5 Å and X−H−Y angles ranging
between a starting point of 130∘−150∘ (Table 15). An additional criterion
was proposed by Fetisov et al.45 and Wernet et al.180 who defined hydro-
gen bonding in DES through a CDF resembling an ellipsoid as shown in
Figure 13. This ellipsoid criterion has also been applied to CCU in MD sim-
ulations by Doherty and Acevedo.35
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TABLE 15 List of Hydrogen Bond Criteria for Various DES Systems.

System
Simulation

method
Donor–acceptor

distance (Å)
X–H–Y angle

cutoff

Perkins et al.31 CCEtg Molecular
dynamics

3.5 150

García et al.94 CCLev Molecular
dynamics

3.0 130

Ullah et al.37 CCLev Molecular
dynamics

3.0 130

García et al.20 CCGly Molecular
dynamics

3.0 130

Perkins et al.31 CCGly Molecular
dynamics

3.5 150

Turner and Holbrey176 CCGly ND/EPSR 3.4 135
García et al.20 CCMal Molecular

dynamics
3.0 130

Perkins et al.31 CCMal Molecular
dynamics

3.5 150

García et al.20 CCU Molecular
dynamics

3.0 130

Fetisov et al.45 CCU First principle
molecular
dynamics

3.5 150

Sun et al.54 CCU Molecular
dynamics

2.95 150

Perkins et al.31 CCU Molecular
dynamics

3.5 150

Using FPMD, Fetisov et al.45 studied the effects of water in CCU (1 : 2
molar ratio). Hydrogen bonds were monitored with a combination of RDFs
and CDFs, while also taking into account the average hydrogen bond types
at each frame of the trajectory. For the pure CCU system, strong interac-
tions between urea and chloride were observed through both the RDFs and
average fraction of hydrogen bonds where the trans hydrogens of urea were
found to prefer bonding with Cl−. Conversely, urea–urea hydrogen bond-
ing of the NH–O==C type was primarily dominated by the cis hydrogens
of urea. This same trend was also observed by Perkins et al.31, 55 when the
average fraction of hydrogen bonds were calculated between urea and chlo-
ride throughout an MD trajectory (Figure 12). Hydrogen bonds between
choline and chloride were also observed through RDFs, however due to the
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FIGURE 12 Average fraction of H-bonds of the type (a) NH–O==C and
(b) NH–Cl−. Source: Perkins et al. 201355.

1 : 2 molar ratio the majority of hydrogen bonds involving Cl− included
interactions with urea. Raman spectroscopy and DFT calculations by Silva
et al. also found hydrogen bonding between chloride and urea to be the most
important interaction present in CCU.181 When water is introduced into the
system, Cl–urea interactions become weaker as water begins to form new
intermolecular interactions with each DES component. Figure 13 illustrates
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defined by Wernet et al.180 Source: Fetisov et al. 201845.

the CDFs of the X−H−Y interactions between choline, urea, water, and
Cl− that showcase the ellipsoid criterion that has been proposed by Wernet
et al.180 The ellipsoid criterion has also been used by Doherty and Acevedo35

who used a nonpolarizable FF to study a pure CCU (1 : 2 molar ratio)
system. Shown in Figure 14, strong hydrogen bonding is evident between the
choline–chloride and urea–chloride, whereas choline and urea rarely inter-
acted through hydrogen bonding.

Perkins et al.31, 55 also studied the systems CCEtG (1 : 2 molar ratio),
CCGly (1 : 2 molar ratio), and CCMal (1 : 2 molar ratio) using the same
methods as their CCU (1 : 2 molar ratio) simulations. Following the relative
contributions of hydrogen bonds for a given hydrogen bond type, it was
observed that the largest fraction of hydrogen bonds were between the HBD
and the anion (see Figure 14). CCEtG and CCGly exhibited similar trends
with the exception of HBD−HBD interactions due to the extra hydroxyl
group of glyceline resulting in a higher fraction. Of these systems, CCMal
has the highest viscosity, perhaps a consequence of the strong cation–anion
and HBD–anion interactions present, which indicates a very stable hydrogen
bond network and limited mobility within the system.
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Additional hydrogen bond analysis can be observed through residence
times calculated by the following autocorrelation functional (Eq. [34]).

𝜏HB = 2 ⋅ ∫
⟨hi(t)hi(0)⟩⟨hi(0)⟩ dt [34]

where hi(0) and hi(t) are hydrogen bonds at time 0 or time t when given a set
criteria. Zahn focused on CCU (1 : 2 molar ratio) using AIMD69 and found
that the cation–anion hydrogen bonding occurring between the hydroxyl
hydrogen and chloride contributed the longest hydrogen bond residence
time of 10.3 ps. Interestingly, the second longest residence time was also
between the hydroxyl hydrogen of choline and the oxygen of urea with
a time of 6.4 ps. These results contradicted reports by Hammond et al.46

where the rotation of the OH group in choline was dynamic thus preventing
rigid hydrogen bonding. Instead, it was discovered that choline preferred
the gauche conformation, leading to longer residence times between the
cation and both anion and HBD. Sun et al.54 also discovered the longest
hydrogen bond residence time in reline to be between choline and chloride
(12.6 ps), while hydrogen bonding between urea and chloride was about
five times shorter (2.4 ps).

CCLev (1 : 2 molar ratio) hydrogen bond lifetimes were also monitored
by García et al.94 and Ullah et al.37 through MD simulations. Ullah extended
the hydrogen bonding criteria to the second solvation shell at a maximum
distance of 6.0 Å and found that the cation–anion (Hc-Cl) interaction had
the longest lifetime followed by cation–HBD (H1-Oc) and anion–HBD
(H1-O11). All other hydrogen bonds in the system were similar and ranged
between 35 and 45 ps (Figure 15). García et al. found that the hydrogen
bond lifetimes were highly dependent on the charge partitioning scheme
to assign charges in the MD simulation.94 When considering the top per-
forming charge partitions, however, it was discovered that the cation–anion
interaction still remained as the longest hydrogen bond lifetime.

Hydrogen bond lifetimes were also calculated by Zhang et al.36 for
CCEtg (1 : 2 molar ratio) using the same FF parameters as Perkins et al..31

Interactions between chloride and choline were found to have considerably
longer lifetimes compared to the studies mentioned above, with the
hydroxyl group of Ch+ and Cl− having a lifetime of 1462.4± 56.0 ps.
The second longest lifetime calculated was between ethylene glycol
and chloride with a value of 972.4± 27.9 ps. All other hydrogen bond
interactions fell into the same range, i.e., 24.1−80.5 ps, as the previous
studies mentioned. These results match the same trend seen in other
systems, where the cation–anion interactions provide the longest lifetimes.



60

Hm

Nc

Oc

Hc Ht

Ol3

Ol1

Ol2 Hl

50

40

t re
s 

(p
s)

30

20

10

Hc-Oc Hc-Cl Hc-Oll Hc-Ol2 Hc-Ol3 Hl-Oc Hl-Cl Hl-Oll Hl-Ol2 Hl-Ol3

0

FIGURE 15 Hydrogen bond lifetimes, tres, for selected atoms in CCLev system. Source: Ullah et al. 201537/Royal Society of
Chemistry /CC BY 3.0.



�

� �

�

196 REVIEWS IN COMPUTATIONAL CHEMISTRY, VOLUME 32

Further detail into the dynamics of the CCEtg system was also provided by
fitting of the molecular dipole moment correlation function for choline and
ethylene glycol to the fractional kinetic Mittag−Leffler model.182 By using
the fractional kinetic model, the dipole relaxation can be separated into a
fast mode and slow mode. The fast time process calculated was attributed
to the weaker hydrogen bond interactions between choline and ethylene
glycol which matches the hydrogen bond lifetimes, while the slower
modes were partially attributed to the longer hydrogen bond lifetimes in
the interactions with nearby chlorides. These results further connect the
considerable influence that the hydrogen bond network has upon system
dynamics in DESs.

Spatial Distribution Functions

General structuring of DES systems have been monitored with the help of
SDFs which provide a three-dimensional visualization of the distribution of
the nearest neighbor to a reference molecule. Systems studied include CCU
(1 : 2 molar ratio),20, 35, 45, 46, 69, 178 CCLev (1 : 2 molar ratio),37, 94 CCEtg
(1 : 2 molar ratio), CCGly (1 : 2 molar ratio),35, 176 CCPhe (1 : 2 and 1 : 3
molar ratio), CCMal (1 : 2 molar ratio), and CCOx (1 : 2 molar ratio).35 As
expected from the RDFs, the chlorine anion resided near the hydrogen bond
donating groups of both the cation and HBD, while the cation–HBD inter-
actions resided in the remaining space surrounding the anion (Figure 16).
Maintaining this ordering via favorable electrostatic interactions has been
suggested to be the driving force for deep eutectic solvent formation.46

APPLICATION OF DES THROUGH SIMULATION

Gas Sorption Studies on DES

The rapid increase of atmospheric pollutants through the combustion of
fossil fuels has been linked to health effects as well as climate change, lead-
ing to the need for environmentally friendly gas capturing techniques.183

DESs have been proposed as carbon capture sorbents due to their tunability
and natural affinity for gas compounds such as CO2.12, 57, 184 Computational
studies have been performed for the choline chloride phenylacetic acid sys-
tem to investigate the binding modes between the DES components and
CO2 at both the vacuum surface and bulk liquid phase.163 Through DFT
calculations, CO2 was found to interact strongly with the COOH group of
phenylacetic acid as well as Cl−, while the choline cation stabilized the chlo-
ride anion through hydrogen bonding with its hydroxyl group. This binding
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FIGURE 16 Spatial distribution functions for (a) urea, (b) ethylene glycol,
(c) levulinic acid, (d) malonic acid, (e) oxalic acid, (f) glycerol, (g) phenol in choline
chloride deep eutectic solvents. Orange denotes the position of the chloride anion,
and the green depicts the choline cation. Source: Doherty et al. 201835.
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motif matched previous DFT studies by the same group for CCLev (1 : 2
molar ratio) and CO2.37 In the bulk phase, MD simulations were performed
at the DES interface where flue gas molecules (N2, H2O, CO2, and O2)
were placed to fill the vacuum to monitor diffusion of each gas into the
liquid.163 Interestingly, CO2 absorption was found to occur with very little
volume expansion indicating minor rearrangement of the DES components
was necessary to maintain the hydrogen bond network. Additionally, water
was readily absorbed into the first layer and hindered the diffusion of CO2
into the bulk region; future designs of DESs for CO2 capture should take
this observation into consideration.

The DES-based capture of SO2 has also been studied both experimen-
tally and computationally. Experimental studies for the eutectic mixtures of
choline chloride with glycerol,185 levulinic acid,186 urea, thiourea, malonic
acid, and ethylene glycol187 have all resulted in absorption capacities sim-
ilar to ILs where the absorption process is reversible and showed no signs
of decreasing capacity throughout the absorption–desorption cycle. Interac-
tions between SO2 and CCGly (1 : 1 molar ratio) have been studied using
DFT188 as well as AIMD173 where both studies confirmed that the chloride
anion binds to SO2 which disrupted the OH–anion interactions with choline
and glycerol causing the system to become more fluid. Weaker interactions
between cation–glycerol and glycerol–glycerol were also disrupted with the
addition of SO2 due to dispersion-like interactions between the gas and
the nonpolar groups of choline and glycerol.173 Although these interactions
are not as significant as the cation–anion and glycerol–anion interactions,
Korotkevich et al.173 suggested that future design of DESs tuned for SO2
absorption may be able take advantage of this interaction by expanding the
nonpolar regions.

DES Interactions at Metal Surfaces

An attractive property that DESs have over traditional organic solvents is
their high conductivity that can lead to catalytic behavior when involved in
the electrodeposition of metals.24, 26–28, 189, 190 Understanding how DESs
nucleate at the surface of metals is crucial for the design of DES-based
materials and technology. Thus, studies have emerged focusing upon
how DES species orient themselves around metal surfaces.191, 192 Exper-
imentally, CCEtg has been studied on the surface of glassy carbon (GC)
with the use of polarization modulation infrared reflection absorption
spectroscopy.193 This spectroscopic study suggested that decreasing the
surface potential to −0.6 V caused the choline cation to absorb vertically to
the surface by means of the N+(CH3)3 group, which resulted in a decrease
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of the molecular dipole moment. Conversely, when the potential was
increased to E>+0.4 V, the choline cation was replaced by the chloride
anion which formed an adlayer on the GC. In this case, the choline cation
was still vertically oriented to maximize the electrostatic interaction with
the anion. The electrodeposition of Cu2+ onto GC and Pt surfaces has
also been investigated in a separate study by Vukmirovic et al.24 Cyclic
voltammetry studies revealed that nucleation rates were sluggish on GC
electrodes in relation to Pt and are likely due to the nucleation structure on
each surface. Although deposition of Cu2+ onto Pt in the CCEtg solvent
medium exhibited faster kinetics relative to GC, a comparative study
was performed replacing CCEtg with a 3 M aqueous solution of NaCl to
increase the chloride concentration that resulted in faster mass and charge
transfer. This study highlights the importance that although DESs provide
a large reduction potential that will ultimately increase cell voltage and
energy density in energy storage devices, the kinetic limitations of charge
and mass transfer at the electrode surface must first be overcome to compete
with current aqueous electrolytes.

The absorption of choline into the (100) surface of a metal was also
studied for CCLev on Ag, Al, and Pt using MD methods.56 Two distinct
absorption layers within 10 Å of the uncharged surfaces was computed for
all three metals, where the first layer is primarily composed of levulinic acid
and choline cations oriented in a parallel fashion to the surface and the sec-
ond consisted of excess chloride anions and levulinic acid molecules. Within
the absorbed layer, diffusion rates of the ions were significantly lower than
that of the bulk solution further emphasizing the strong interactions present
between the DES and the metal surface.

Proteins in DES

DESs have been utilized as cosolvents in enzymatic catalysis for completely
green chemical processes. For example, DES systems have been shown to
drive regioselectivity when combined with the potato epoxide hydrolase
StEH1 for the hydrolysis of chiral (1,2)-trans-2-methylstyrene oxide.194

Additionally, eight different DES systems have been shown to stabilize
Candida antarctica lipase B (CALB) and C. antarctica lipase A.195 The
DESs/enzymes provided a 30% enhancement to the production yield of
𝛼-monobenzoate glycerol through the esterification between benzoate and
glycerol compared to commercially available biocatalysts.196 Interestingly,
CALB has been shown to lose its activity by nearly 70% when pretreated
with 10 M urea due to protein denaturing. However, when pretreated with
CCU, the activity loss was <1%.195 The origin of why CALB remained
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active in a solvent that contained 66% urea was investigated by Monhemi
et al.39 through classical MD simulations. The CALB in an 8 M urea
simulation found that urea molecules rapidly diffused into the 𝛼-Helix5
active site disrupting hydrogen bonding, which resulted in a denaturing
process. In the CCU environment, the urea molecules preferred to interact
with the choline and Cl ions, allowing the 𝛼-Helix5 site to retain its
intramolecular hydrogen bonds and remain active. Enzyme stability was
also observed in the CCU mixture as the chloride anions formed hydrogen
bonds with surface residues of the enzyme leading to the phenomenon
known as “enzyme immobilization.” This technique has also been reported
for CALB in CCGly where no loss in enzyme activity was observed for
up to 14 days.196 The combination of DESs and biocatalysts is a rapidly
developing and exciting field. However, many unanswered molecular level
questions remain necessitating the future development and application of
novel computational tools.

SUMMARY

Provided in this chapter is a comprehensive overview of DESs and the meth-
ods used to study these systems through simulation. The majority of simu-
lations have been performed on Type III DESs that contain choline chloride
as the salt and a corresponding organic HBD at specific molar ratios. Ide-
ally, due to the strong polarization present in each of the systems, ab initio
methods such as DFT, FPMD, and AIMD would be utilized because of
their explicit treatment of polarization and many body effects. While ab ini-
tio methods can provide valuable information such as solvation structure,
charge transfer, and at times reactivity, limitations in their trajectory lengths
and system sizes call for more computationally affordable methods. Con-
siderable efforts in the development of nonpolarizable FFs for classical MD
simulations have been reported that have provided in depth analysis into var-
ious DES properties such as density, thermal expansion coefficient, surface
tension, heat capacity, enthalpy of vaporization, isothermal compressibility,
viscosity, and self-diffusion coefficients. Due to the importance of parame-
ter validation, this chapter provided an overview of how prominent DES FFs
performed in reproducing bulk properties and liquid structures measured
experimentally or computed using higher-theory ab initio methods.

Generally, most published nonpolarizable FFs performed well in
reproducing the bulk properties of DESs as outlined in Table 5. Significant
improvement was noted when scaling the charges for the various DES
systems to mimic charge transfer effects and polarization. In most cases,
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a uniform scaling factor between 0.7 and 0.9 was chosen due to reported
success in previous applications to ILs. Alternatively, some groups have
developed system-specific charge models based on DFT calculation of
small DES clusters or charge analysis from AIMD simulations. Success
in reproducing bulk properties in MD simulations has also elucidated
the structure–property relationship of these solvents by highlighting the
importance of the hydrogen bond network that is formed between each
component. The hydrogen bond network greatly influences properties such
as viscosity and diffusion coefficients, which can limit the application of
some DESs as alternative solvents. A major challenge for nonpolarizable
FFs was the poor reproduction of self-diffusion coefficients; explicit
treatment of polarization effects may be required to improve agreement.
Additionally, a drawback of employing a scaled charge model is the
treatment of additives that may alter the magnitude of charge transfer. Due
to these concerns, a general and completely transferable nonpolarizable FF
may be difficult or even impossible to develop for DESs.
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